TÜV SÜD Industrie Service GmbH

Messstelle nach § 29b BlmSchG Westendstraße 199 80686 München Standort Mannheim

Bericht

Anlage:

über die Durchführung von Emissionsmessungen

Kraftwerk Bau A817

Anlage-Nr.:35.05N

Betreiber: siehe Auftraggeber

Standort: Carl-Bosch-Straße 38

67056 Ludwigshafen

Auftragsdatum: 04.04.2024

Bestellzeichen: 1086815423

Messtermin: 14.10.2024- 15.10.2024

Berichtsnummer: 3997528_Notstromdie-

sel_BASF_EMI_BER

Aufgabenstellung: wiederkehrende Emissionsmessungen

entsprechend den Vorgaben der 44.

BImSchV

Befristete Bekanntgabe: 18.02.2026

DAKKS
Deutsche
Akkreditierungsstelle

Die Akkreditierung gilt nur für den in der Urkundenanlag aufgeführten Akkreditierungsumfang.

Datum: 08.11.2024

Unsere Zeichen: IS-US1-MAN/Ba

Dieses Dokument besteht

aus 36 Seiten. Seite 1 von 36

Die auszugsweise Wiedergabe des Dokumentes und die Verwendung zu Werbezwecken bedürfen der schriftlichen Genehmigung der TÜV SÜD Industrie Service GmbH.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände.

Amtsgericht München HRB 96 869
USt-IdNr. DE129484218
Informationen gemäß § 2 Abs. 1 DL-InfoV
unter tuvsud.com/impressum

Seite 2 von 36 Zeichen/Erstelldatum: IS-US1-MAN/Ba / 08.11.2024 Berichtsnummer: 3997528_Notstromdiesel_BASF_EMI_BER

Zusammenfassung

Quelle	Messkomponente	Einheit	Maximaler Messwert minus Up	Maximaler Messwert plus Up	Emissions- begrenzung	Betriebs- zustand
A014 (N91)	Feststoffe (Staub)	mg/m³ N,tr	54	62	80	
A014 (N91)	Kohlenmonoxid (CO)	mg/m³ N,tr	341	438	-	
A014 (N91)	NOx als NO2	mg/m³ N,tr	3.204	4.362		
A015 (N92)	Feststoffe (Staub)	mg/m³ N,tr	46	53	80	
A015 (N92)	Kohlenmonoxid (CO)	mg/m³ N,tr	481	606		
A015 (N92)	NOx als NO2	mg/m³ N,tr	3.238	4.461	(2)	

Inhaltsverzeichnis

1	Formulierung der Messaufgabe	3
2	Beschreibung der Anlage und der gehandhabten Stoffe	7
3	Beschreibung der Probenahmestelle	9
4	Mess- und Analyseverfahren, Geräte	14
5	Betriebszustand der Anlage während der Messungen	20
6	Zusammenstellung der Messergebnisse	21
7	Anhang	24

1 Formulierung der Messaufgabe

1.1 Auftraggeber

Firma: BASF SE

Anschrift: Carl-Bosch-Straße 38 67056 Ludwigshafen

1.2 Betreiber

Firma: siehe Auftraggeber Anschrift: siehe Auftraggeber

Arbeitsstätten-Nr.:

1.3 Standort

Anschrift: siehe Auftraggeber

Gebäude: Kraftwerk

Emittent: A014 (N91) – A015 (N92)

1.4 Anlage

Notstromaggregate zur Sicherstellung der unterbrechungsfreien Stromversorgung gemäß §16 der 44. BlmSchV

1.5 Datum der Messung

Zeitpunkt/Zeitraum der Messung: 14.10.2024 bis 15.10.2024

Datum der letzten Messung: 03/2024 für das Jahr 2023

Datum der nächsten Messung: 10/2025

1.6 Anlass der Messung

Wiederkehrende Emissionsmessungen entsprechend den Vorgaben der 44. BlmSchV

1.7 Aufgabenstellung

Zur Erfüllung der Auflagen der 44. BImSchV, beauftragte die oben genannte Firma die gemäß §29b Bundes-Immissionsschutzgesetz (BImSchG) benannte Messstelle "TÜV SÜD Industrie Service GmbH" mit der Durchführung entsprechender Emissionsuntersuchungen.

Es sind folgende Grenzwerte festgelegt:

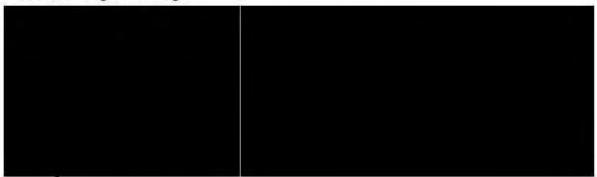
Grenzwert nach 44 BlmSchV	je Notstromaggregat	
Kohlenmonoxid (CO)		
Stickstoffoxide (als NO ₂)	-7	
Staub	80 mg/m ³	
Bezugsgrößen	Bezugswert	
Sauerstoff	5 Vol%	

Die Emissionsgrenzwerte sind als Masse der emittierten Stoffe, bezogen auf das Volumen des Abgases im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchtegehaltes an Wasserdampf zu verstehen. Die Emissionsgrenzwerte beziehen sich auf den oben angegebenen Volumengehalt an Sauerstoff im Abgas (Bezugssauerstoffgehalt).

1.8 Messobjekte

Messkomponente Schadstoffe	Anzahl der Einzelmessungen Art der Erfassung	
Kohlenmonoxid (CO)	je 3 à 30 min kontinuierlich registrierend	
Stickstoffoxide, angegeben als NO ₂	je 3 à 30 min kontinuierlich registrierend	
Staub	je 3 à 30 min diskontinuierlich	

Messkomponente Bezugsgrößen und Randparameter	Anzahl der Einzelmessungen Art der Erfassung	
Volumenstrom	kontinuierlich registrierend	
Abgastemperatur	kontinuierlich registrierend	
Druck im Abgaskanal	diskontinuierlich	
Feuchtegehalt	1 à 30 min.	
Sauerstoff (O ₂)	je 3 à 30 min kontinuierlich registrierend	
Kohlendioxid (CO ₂)	je 3 à 30 min kontinuierlich registrierend	



1.9	Ortsbesichtigung vor Messdurchführung	
	☐ Ortsbesichtigung durchgeführt am:	
	keine Ortsbesichtigung durchgeführt, da mit den vorherigen Messungen an dieser Anlage schon befasst.	
1.10	Messplanabstimmung	
	☑ mit dem Betreiber	
	□ keine Messplanabstimmung durchgeführt	
1.11	An der Messung beteiligte Personen	
1.12	Beteiligung weiterer Institute	
	keine	
1.13	Fachlich Verantwortliche	

2 Beschreibung der Anlage und der gehandhabten Stoffe

2.1 Bezeichnung der Anlage

2.2 Beschreibung der Anlage

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Kamin		
Höhe über Grund	120m	
UTM Koordinaten	A014 (N91) 32U 458854 5484650 A015 (N92) 32U 458855 5484649	
Bauausführung	Stahl	

2.4 Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe

- 2.5 Betriebszeiten nach Betreiberangaben
- 2.5.1 Gesamtbetriebszeit

2.5.2 Emissionszeit nach Betreiberangaben entspricht der Gesamtbetriebszeit

- 2.6 Einrichtung zur Erfassung und Minderung der Emissionen
- 2.6.1 Einrichtung zur Erfassung der Emissionen
- 2.6.1.1 Art der Emissionserfassung

Die Abgase werden im geschlossenen Abgaskanal in den Abgaskamin geleitet.

2.6.1.2 Ventilatorkenndaten

Nicht zutreffend

2.6.2 Einrichtung zur Verminderung der Emissionen

Einrichtungen zur Verminderung der Emissionen waren zum Messzeitpunkt nicht vorhanden.

2.6.3 Einrichtung zur Verdünnung des Abgases

nicht zutreffend

3 Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Notstromaggregat	A014 (N91)	
Lage	im Freien	
Höhe über Grund	35 m	
Verlauf des Abgaskanals	senkrecht	
Abgasrohr-Geometrie / Durchmesser	zylindrisch / 0,8m	
Hydraulischer Durchmesser	0,8 m	
Messquerschnitt	0,5027m²	
freie Einlaufstrecke	ca. 30 m	
freie Auslaufstrecke	ca. 30 m	
≥ 5 D _h Ein- und 2 D _h Auslauf (5 D _h vor Mündung)	ja	

Notstromaggregat	A015 (N92)	
Lage	im Freien	
Höhe über Grund	35 m	
Verlauf des Abgaskanals	senkrecht	
Abgasrohr-Geometrie / Durchmesser	zylindrisch / 0,8m	
Hydraulischer Durchmesser	0,8 m	
Messquerschnitt	0,5027m²	
freie Einlaufstrecke	ca. 30 m	
freie Auslaufstrecke	ca. 30 m	
≥ 5 D _h Ein- und 2 D _h Auslauf (5 D _h vor Mündung)	ja	

3.1.2 Arbeitsfläche und Messbühne

Notstromaggregat	A014 (N91)
dauerhafte Messbühne	ja
Tragfähigkeit i.O.	ja
ausreichende Arbeitsfläche und Arbeitshöhe	ja
ausreichender Traversierraum zur Er- reichung aller Messpunkte im Mess- querschnitt	ja
keine Einflüsse durch Umgebungsbedingungen auf Messergebnisse?	ja

Notstromaggregat	A015 (N92)
dauerhafte Messbühne	ja
Tragfähigkeit i.O.	ja
ausreichende Arbeitsfläche und Arbeitshöhe	ja
ausreichender Traversierraum zur Er- reichung aller Messpunkte im Mess- querschnitt	ja
keine Einflüsse durch Umgebungsbedingungen auf Messergebnisse?	ja

3.1.3 Messöffnungen

Notstromaggregat	A014 (N91)	
Anzahl	2	
Größe	3" Zoll	
Ausführung	Innengewinde	
Lage am Kanal	90° zueinander	
Stutzenlänge	ca. 0,15 m	

Notstromaggregat	A015 (N92)				
Anzahl	2				
Größe	3" Zoll				
Ausführung	Innengewinde				
Lage am Kanal	90° zueinander				
Stutzenlänge	ca. 0,15 m				

3.1.4 Strömungsbedingungen im Messquerschnitt

Notstromaggregat	A014 (N91)				
Winkel Gasstrom zu Mittelachse Abgaskanal < 15 °	ja				
keine lokale negative Strömung?	ja				
Verhältnis höchste/niedrigste örtliche Geschwindigkeit im Messquerschnitt < 3 : 1	ja				
Mindestgeschwindigkeit in Abhängig- keit vom verwendeten Messverfahren	ja				

Notstromaggregat	A015 (N92)
Winkel Gasstrom zu Mittelachse Abgaskanal < 15 °	ja
keine lokale negative Strömung?	ja
Verhältnis höchste/niedrigste örtliche Geschwindigkeit im Messquerschnitt < 3 : 1	ja
Mindestgeschwindigkeit in Abhängig- keit vom verwendeten Messverfahren	ja

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Notstromaggregat	A014 (N91)
Messbedingungen entsprechend DIN EN 15259 erfüllt?	ja
ergriffene Maßnahmen	keine
zu erwartende Auswirkungen auf das Messergebnis	keine
Empfehlungen und Hinweise zur Verbesserung der Messbedingungen	keine

Notstromaggregat	A015 (N92)
Messbedingungen entsprechend DIN EN 15259 erfüllt?	ja
ergriffene Maßnahmen	keine
zu erwartende Auswirkungen auf das Messergebnis	keine
Empfehlungen und Hinweise zur Verbesserung der Messbedingungen	keine

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt Notstromaggregate:

A014 (N91)

A015 (N92)

Messkomponente	Messachsen	Anzahl der Messpunkte / Messachse		
Volumenstrom	2	2	0,12 / 0,68	
O ₂ , CO, NO _x	2	2	0,12 / 0,68	

3.2.2	Ho	mogenitätsprüfung						
		□ wird durchgeführt						
	\boxtimes	nicht durchgeführt, weil:						
		☐ Fläche Messquerschnitt						
		Netzmessung Netzm						
		☐ liegt vor						
		Datum der Homogenitätsprüfung:						
		Berichts-Nr.:						
		Prüfinstitut:						
	Erg	gebnisse der Homogenitätsprüfung:						
		Messung an einem beliebigen Punkt						
		Messung an einem repräsentativen Punkt						
		Achse:						
		Eintauchtiefe:						
		□ Netzmessung						

3.2.3 Komponentenspezifische Darstellung

Nicht zutreffend

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Messpunkte Lage im Netz gemäß DIN EN 15259

Messfühler Pitot-Staurohr

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

Messbereich 0 bis 1250 Pa

Bestimmungsgrenze 5 Pa kontinuierliche Ermittlung ja

4.1.2 Statischer Druck im Abgaskamin

Richtlinie DIN EN 16911-1

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druck-

messmodul FDA

Hersteller Ahlborn, Holzkirchen

Messbereich 0 bis ±1250 Pa

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

4.1.4 Abgastemperatur

Richtlinie VDI/VDE 3511 Blatt 2

Messeinrichtung Digitalanzeigeinstrument Typ Almemo 2690 mit

T-Modul FT FZA 9020-FS (NiCr-Ni)

Hersteller Ahlborn, Holzkirchen

Messfühler Thermoelement NiCr-Ni (Typ K)

Messbereich -200 bis +1370°C

kontinuierliche Ermittlung ja

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Richtlinie DIN EN 14790

Ermittlungsmethode Kondensation als Wasser und Adsorption auf

Silikagel

Messeinrichtung Waage, Typ TE 412

Entnahmesonde Titan, Länge 0,8 m, elektrisch beheizt auf 160

C

Partikelfilter Planfilter Munktell MK 360 im Filtergehäuse,

außenliegend, elektrisch beheizt

Gasprobenehmer GS 212

Analyseverfahren Gravimetrie

Messgerät Waage, Typ TE 412

Hersteller Sartorius
Messbereich 4-40 Vol.-%

4.1.6 Abgasdichte

Bestimmung berechnet unter Berücksichtigung der Abgas-

zusammensetzung, des Luftdrucks, der Abgastemperatur und der Druckverhältnisse im Kanal

4.1.7 Abgasverdünnung

entfällt

4.1.8 Volumenstrom

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Mittlere Abgasgeschwindigkeit

Messverfahren siehe 4.1.1 Messeinrichtung siehe 4.1.1

Querschnittsfläche

Messverfahren Messung mit Messstab

Messeinrichtung Messstab

4.2 Automatische Messverfahren

4.2.1 Messkomponente Sauerstoff, Kohlendioxid

4.2.1.1 Messverfahren

O₂ Paramagnetische Gasanalyse

nach DIN EN 14789

CO₂ Nicht-Dispersive-Infrarot-Gasanalyse (NDIR)

CO Nicht-Dispersive Infrarot-Gasanalyse (NDIR)

nach DIN EN 15058

NOx Chemilumineszenz mit NO₂-Konverter (CLD)

nach DIN EN 14792

4.2.1.2 Analysator

Hersteller Horiba Typ PG 350

4.2.1.3 Eingestellter Messbereich

O₂ 0 - 25 Vol.-% NO_X 0 - 2500 ppm CO 0 - 1000 ppm CO₂ 0 - 20 Vol.-% Ausgangssignal 4 - 20 mA

4.2.1.4 Gerätetyp eignungsgeprüft

BAnz AT 05.03.2013 B10

4.2.1.5 Probenahme und Probenaufbereitung

Entnahmesonde Titan, Länge 0,8 m, elektrisch beheizt auf

160°C

Staubfilter Sintermetallfilter nach Sonde, beheizt auf

160°C

Probegasleitung

vor Gasaufbereitung Länge 10 m, Material: PTFE, beheizt auf 160°C

nach Gasaufbereitung Länge 10 m, Material: PTFE, unbeheizt

Messgasaufbereitung

Messgaskühler Cooler ECM

Hersteller M & C Products Analysentechnik GmbH

Regeltemperatur 4°C Konverter integriert

4.2.1.6 Überprüfen von Null- und Referenzpunkt mit Prüfgasen

Nullgas Stickstoff (5.0)

Prüfgase

Mischgas O₂ / CO₂ 19,9 Vol.-% O₂ / 16,0 Vol.-% CO₂, Rest N₂

Hersteller Linde Zertifikat gültig bis 30.11.2026

NO_{X /} CO 400 ppm NO, 708 ppm CO, Rest N₂

Hersteller Linde

Zertifikat gültig bis NO: 02.05.2026, CO: 16.05.2025

4.2.1.7 Einstellzeit des gesamten Messaufbaus

Einstellzeit 20 Sekunden

4.2.1.8 Messwerterfassungssystem

Messwertregistrierung durch elektronische Datenerfassung

und -auswertung

Fabrikat/Typ Datenerfassungssystem "Trendows",

Trendbus-Module EA8-V/A

Hersteller E. Kirsten

Auswertung Tabellenkalkulationsprogramm

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

nicht Bestandteil der Prüfung

4.4 Messverfahren für partikelförmige Emissionen

4.4.1 Messkomponente Gesamtstaub

4.4.1.1 Messverfahren

Richtlinie DIN EN 13284-1 bzw. VDI 2066 Blatt 1

Gravimetrie der auf Planfiltern abgeschiedenen

Staubmasse

ja / Schwanenhals

4.4.1.2 Probenahme und Probenaufbereitung

Filtergerät Plan-Filterkopfgerät,

elektrisch beheizt auf ca. 160°C

Anordnung außenliegend am Abgaskanal

Entnahmesonde Unmittelbar auf dem Krümmer angeschraubt

Beheizung durch das Messgas Wirkdurchmesser siehe Anhang

Filtrationstemperatur 160°C

Krümmer zwischen Entnahmesonde

und Filtergehäuse

Material Sonde / Filterhalter Titan

Filter Munktell MK 360 Quartz Microfibre

Stora Filter Products, Schweden

Abscheidegrad > 99,9% Porendurchmesser 0,2µm Durchmesser 45 mm

Absaugrohr Material: Titan

Länge 0,8 m

elektrisch beheizt auf ca. 160°C

Absorptionssystem entfällt, da nur Gesamtstaub bestimmt wird

für filtergängige Stoffe

Absorptionsmittel entfällt Sorptionsmittelmenge entfällt

Absaugeeinrichtung Pumpe: Rietschle TLV 6; Gasuhr Itron G4 RF1

4.4.1.3 Behandlung der Filter und der Ablagerungen

Trocknung der Filter vor Beaufschlagung: 180°C, > 1 h

Abkühlung im Exsiccator über Silicagel nach Beaufschlagung: 160°C, > 1 h

Abkühlung im Exsiccator über Silicagel/CaCl₂

Rückgewinnung von Ablagerungen

vor Filter

Spülung der Düse, des Krümmers und des Absaugrohrs. Abdampfrückstand wird auf Filter-

gewicht aufaddiert

Wägung der Filter

Waage Sartorius ME 235-P - OCE

4.4.1.4 Aufbereitung und Analyse der Filter und der Absorptionslösungen

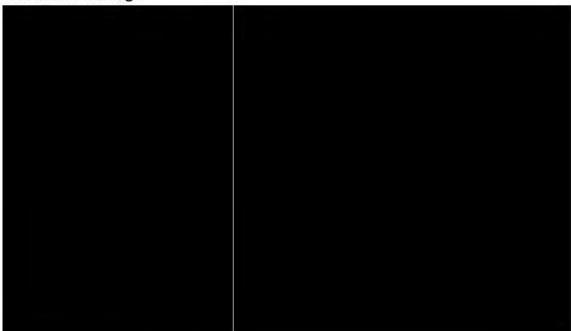
Messfilter entfällt Absorptionslösungen entfällt

nicht Bestandteil der Prüfung

4.5 Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u. ä.)

nicht Bestandteil der Prüfung

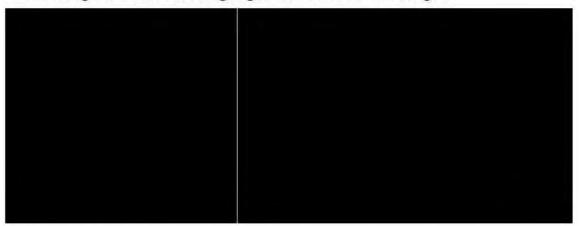
4.6 Geruchsemissionen


nicht Bestandteil der Prüfung

5 Betriebszustand der Anlage während der Messungen

Die Daten zur Beschreibung des Betriebszustandes wurden vom Betreiber zur Verfügung gestellt und auf Plausibilität geprüft. Während der Messung wurden diese Daten stichprobenartig kontrolliert.

5.1 Produktionsanlage


5.2 Abgasreinigungsanlagen

Es sind keine Abgasreinigungsanlagen vorhanden.

6 Zusammenstellung der Messergebnisse

6.1 Bewertung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Alle Einzelergebnisse der gemessenen Stoffkomponenten und die für die Ermittlung erforderlichen Bezugsgrößen sind in Tabellenform mit der jeweiligen Messzeit im Anhang Mess- und Rechenwerte aufgeführt.

Massenkonzentrationen:

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwert
A014 (N91)	Feststoffe (Staub)	mg/m³ N,tr	3 à 30 min	38,0	26,1	58,0
A014 (N91)	Kohlenmonoxid (CO)	mg/m³ N,tr	3 à 30 min	386,3	383,2	389,5
A014 (N91)	NOx als NO2	mg/m³ N,tr	3 à 30 min	3.766,7	3.754,3	3.782,8
A015 (N92)	Feststoffe (Staub)	mg/m³ N,tr	3 à 30 min	27,2	16,0	49,5
A015 (N92)	Kohlenmonoxid (CO)	mg/m³ N,tr	3 à 30 min	510,6	475,5	543,4
A015 (N92)	NOx als NO2	mg/m³ N,tr	3 à 30 min	3.820,2	3.803,9	3.849,3

Die angegebenen Messwerte sind auf die Bedingungen der Emissionsbegrenzung bezogen.

Massenströme:

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwert
A014 (N91)	Feststoffe (Staub)	[kg/h]	3 à 30 min	0,697	0,480	1,064
A014 (N91)	Kohlenmonoxid (CO)	[kg/h]	3 à 30 min	7,078	7,030	7,155
A014 (N91)	NOx als NO2	[kg/h]	3 à 30 min	69,012	68,527	69,389
A015 (N92)	Feststoffe (Staub)	[kg/h]	3 à 30 min	0,501	0,294	0,909
A015 (N92)	Kohlenmonoxid (CO)	[kg/h]	3 à 30 min	9,391	8,740	9,977
A015 (N92)	NOx als NO2	[kg/h]	3 à 30 min	70,260	69,846	70,756

6.3 Messunsicherheiten

Messkomponente	Einheit	y _{max}	Up	y _{max} - Up	y _{max} + Up	Bestimmungsmethode
Feststoffe (Staub)	mg/rn³ N,tr	58,0	4,2 p = 0,95	54	62	x Doppelbestimmung Indirekter Ansatz
Kohlenmonoxid (CO)	mg/rn³ N,tr	389,5	48,7 p = 0,95	341	438	Doppelbestimmung x Indirekter Ansatz
NOx als NO2	mg/rn³ N,tr	3.782,8	578,7 p = 0,95	3.204	4.362	Doppelbestimmung x Indirekter Ansatz
Feststoffe (Staub)	mg/rn³ N,tr	49,5	3,6 p = 0,95	46	53	x Doppelbestimmung Indirekter Ansatz
Kohlenmonoxid (CO)	mg/rn³ N,tr	543,4	62,2 p = 0,95	481	606	Doppelbestimmung x Indirekter Ansatz
NOx als NO2	mg/rn³ N,tr	3.849,3	611,3 p = 0,95	3.238	4.461	Doppelbestimmung x Indirekter Ansatz
	Feststoffe (Staub) Kohlenmonoxid (CO) NOx als NO2 Feststoffe (Staub) Kohlenmonoxid (CO)	Feststoffe (Staub) mg/m³ N,tr	Feststoffe (Staub) mg/m³ N,tr 58,0 Kohlenmonoxid (CO) mg/rn³ N,tr 389,5 NOx als NO2 mg/rn³ N,tr 3.782,8 Feststoffe (Staub) mg/rn³ N,tr 49,5 Kohlenmonoxid (CO) mg/rn³ N,tr 543,4 NOx als NO2 mg/rn³ 3,849,3 3.849,3	Feststoffe (Staub) Mg/m³ N,tr S8,0 p = 0,95 Mg/m³ N,tr Mg/m³ N,tr N,tr Nox als NO2 Feststoffe (Staub) Mg/m³ N,tr Mg/m³ N,tr	Feststoffe (Staub) mg/m³ 58,0 4,2 p = 0,95 54	Feststoffe (Staub) mg/m³ 58,0 4,2 p = 0,95 54 62

6.4 Diskussion der Ergebnisse

Die ermittelten Messergebnisse weisen im Hinblick auf

- · die Betriebsbedingungen (Einsatzstoffe im Messzeitraum, Temperaturen etc.),
- · die Betriebsweise,
- die messtechnischen Abläufe

keine Unplausibilitäten auf.

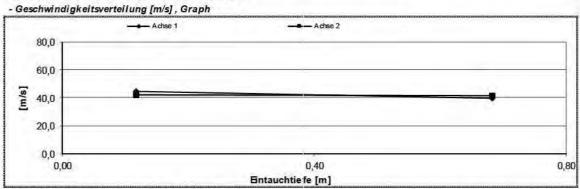
Die Plausibilitätsprüfung erfolgte unter Berücksichtigung folgender Sachverhalte:

- · Vorwissen von vergleichbaren Anlagen
- · Korrelation von Signalverläufen mit Betriebszuständen

Prüflaboratorium Emissionsmessungen/Kalibrierungen

Messstelle nach § 29b BlmSchG - DAkkS Akkreditierung nach DIN EN ISO/IEC 17025

Fachlich Verantwortlicher	Projektleiter



7 Anhang

7.1 Mess- und Rechenwerte

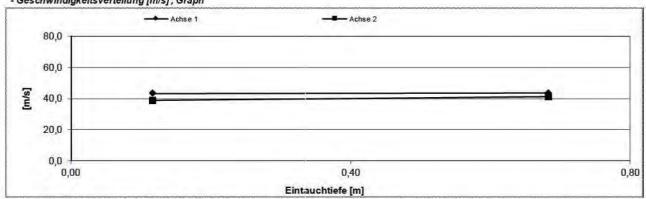
Anhang Mess- und I	Rechenwe	erte									
- Bericht-Nr.	3997528		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- Anlage	Kraftwe	rk			yayaayaana
- Firma	BASF					- Quelle	A014 (NS)1)			
- Probenahmeparan	neter vor	Ort									
- Messdatum	15.10.20	24				- Uhrzeit	von	9:00	bis	9:10	Uhr
- Bemerkung											
- Beschreibung Mes	squerso	hnitt									
Durchmesser		[m]	0,800	u _c =	0,016	gerade Enlaufstred gerade Auslaufstre		[m] [m]	30,00		
Fläche Messebene A		[m²]	0,5027	u _c =	0,012	Messöffnungen		2	12,00		
Hydraulischer Ø (HD)		[m]	0,800			Innenw and		glattw ar	ndig		
- Anforderung DIN 1	5259 (6.2)	/ DIN 13	284-1			- Empfehlung DIN	15259				
Abgasströmung Winke	l zur Haup	tachse <	15°		ja	gerade Enlaufstred	ke (30 m)	>= 5 x HD	(4 m) ?		ja
keine lokale negative S	Strömung?	,			ja	gerade Auslaufstre	ecke (30 m)	>= 2 x H	ID (1,6 m)?	•	ja
υ MAX / υ MIN mit 1,1 :	1 ist < 3 :	1?			ja						
Dynamischer Druck >					ja						
Wandabstand MP 1/0	> 5 cm bzv	v. > 3 %	v.Ø?		ja						
- Mittlere Abgaspar	ameter					- Mittlerer Volum	enstrom				
Abgastemperatur	Tc	[°C]	469,2	u _c =	2,3	Betriebszustand		[m³/h]	75.714	u _c =	1.917
						Norm (feucht)		[m³/h]	27.570	u _c =	778
Feuchte	*)	[kg/m³]	0,049	u _c =	0,002	Norm (trocken)		[m3/h]	25.971	u _c =	731
Feuchte	ф H2O	[Vol%]	5,8	$\mathbf{u}_{\mathrm{c}} =$	0,3	Up Norm (trocken)		[m³/h]	1.462	5,6 %	K=2
Dichte	p *)	[kg/m³]	1,331								
Dichte	p Betrieb	[kg/m³]	0,471	$u_c =$	0,003			*************		************	
Luftdruck	Patm	[Pa]	100.640	u _c =	173						
Statischer Druck	Pstat	[Pa]	-365	u _c =	0,9						
Absolutdruck	Pc	[Pa]	100.275		173						
Dynamischer Druck	ΔΡ	[Pa]	416,4		1,3						
Geschw indigkeit	U	[m/s]	42,05	***************************************	0,44	- Korrektur mittle	ere Gesch	windigk	eit (Wand	leffekte)
Sauerstoff		[Vol.%]	9,8	u _c =	0,3	Ausgleichsfaktor fü	~~~~~~	~~~~~~~~~			***********
Kohlendioxid		[Vol.%]	7,9	u _c =	0,2	glattw andig mittlere Geschwind	0,995			41,84	m/e
Rest als Stickstoff		[Vol.%]	82,3			Entsprechend sind		The Chine	röme korrig		1113

*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

Messpunkt	1	2	1	1	1	1	1		1 1	Crest	Cabindo
Entauchtiefe [m]	0,12	0,68 +		•	•			-1	1 1	Faktor	Schleie
Achse 1	44,68	39,78				-				1,06	1,12
Achse 2	42,29	41,45							CHARLES THE STATE OF THE STATE	1,01	1,02
stfaktor Gesamt Profil =		<1.3?	ia		Schiofo	Gesamt F	Profil =	······································	<1.2	? la	

41,64 m/s

4 90 9 90	22/7///	Charles		100000
Anhang	Mess-	und F	Rechen	werte


- Bericht-Nr.	3997528	DAVE STATES SHAVE			- (n	- Anlage	Kraftwer		, 15 Allino 15 All 15 A	THE STATE OF THE S	
- Firma	BASF					- Quelle	A015 (NS	92)	visco minimum months		
- Probenahmeparame	·										
- Messdatum	14.10.202	24				- Uhrzeit	von	11:40	bis	11:50	Uhr
- Bemerkung											
- Beschreibung Mess	querschnitt										
Durchmesser		[m]	0,800	$u_c =$	0,016	gerade Einlaufstrecke		[m]	30,00		
			1.000.0			gerade Auslaufstrecke		[m]	30,00		
Fläche Messebene A		[m²]	0,5027	u _c =	0,012	Messöffnungen		2			
Hydraulischer Ø (HD)		[m]	0,800			Innenwand		glattwand	lig		
- Anforderung DIN 15:						- Empfehlung DIN 15					
Abgasströmung Winkel	State of the section of the section of	hse < 15 °			ja	gerade Einlaufstrecke	(30 m) >=	5 x HD (4	m)?		ja
keine lokale negative St					ja	gerade Auslaufstrecke	(30 m) >	2 x HD (1	,6 m)?		ja
υ MAX / υ MIN mit 1,1 :		?			ja						
Dynamischer Druck > 5					ja						
Wandabstand MP 1/0 >	5 cm bzw.>	3 % v. Ø	?		ja	L					
- Mittlere Abgasparam	neter					- Mittlerer Volumenst	rom				
Abgastemperatur	Tc	[°C]	488,7	u _c =	2,4	Betriebszustand		[m³/h]	75.353	u _c =	1.908
						Norm (feucht)		[m³/h]	26.611	$u_c =$	751
Feuchte	*)	[kg/m³]	0,052	u _c =	0,003	Norm (trocken)		[m³/h]	24.988	u _c =	703
Feuchte	ф H2O	[Vol%]	6,1	u _c =	0,3	Up Norm (trocken)		[m³/h]	1.407	5,6 %	K=2
Dichte	p*)	[kg/m³]	1,333								
Dichte	p Betrieb	[kg/m³]	0,457	u _c =	0,003						
Luftdruck	Patm	[Pa]	100.170	u _c =	173	1					
Statischer Druck	P stat	[Pa]	-369	u _c =	0,9						
Absolutdruck	Pc	[Pa]	99.801	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	400,0	u _c =	1,3						
Geschwindigkeit	υ	[m/s]	41,85	uc =	0,44	- Korrektur mittlere G	eschwin	digkeit (W	andeffekte)	
Sauerstoff		[Vol.%]	9,4	u _c =	0,3	Ausgleichsfaktor für W				**************************************	
Kohlendioxid		[Vol.%]	8,3	u _c =	0,2	glattwandig	0,995				

*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

[Vol.%]

- Geschwindigkeitsverteilung [m/s], Graph

Rest als Stickstoff

mittlere Geschwindigkeit v (korrigiert)

Entsprechend sind auch die Volumenströme korrigiert.

- Geschwindigkeitsverteilung	[m/s], Tabelle
------------------------------	----------------

Messpunkt	1	2	1	11	-1	1	1	-1	1 1	Const Eabter	Schiefe
Eintauchtiefe [m]	0,12	0,68								Crest Faktor	Scinere
Achse 1	43,49	43,66				***************************************		***************************************		1,00	1,00
Achse 2	39,01	41,24							ANIANDA	1,03	1,06
									A CONTRACTOR OF THE CONTRACTOR	and the second s	
restfaktor Gesamt Profil =	Antikani ili wililay	< 1,3 ?	ja		Schiefe G	esamt Profil	=		< 1,2	? ja	

*) Normzustand (trocken), (273 K; 1013 hPa)

- Berichts-Nr.: 3997528			- Anlage:	Kraftwerk			
- Firma: BASF			- Quelle:	A014 (N91)		
Messkomponente:		Feststoffe	(Staub)		Out-Stac	k Planfilter	
Probenahmeparameter Randbedingungen:		r					
- Anzahl durchgeführter Einzelmessungen:				3			
- Bemerkung:						-	_
- Messung-Nr.:		1 1	2	3			
- Messdatum:	T see	15.10.24	15.10.24	15.10.24			
- Uhrzeit :	von: bis:	9:10 9:40	9:44 10:14	10:18 10:48			
- Luftdruck:	[hPa]	1006	1006	1006	-	+ +	
- Mittleres Abgasvolumen (N, tr):	[m³/h]	25.971	25.971	25.971		1	
Standardabweichung uc:	[m³/h]	731	731	731	-		
- Mittlere Abgastemperatur	[°C]	489	492	513			
- Bezugssauerstoff:	[Vol%]	5,0	5,0	5,0			
- Mittlerer Sauerstoffgehalt:	[Vol%]	9,8	9,7	9,7		16	
Standardabweichung uc:	[Vol%]	0,08	0,07	0,07			
- gemäß 44. BlmSchV wird immer Sauerstoffbezogen		ja	ja	ja			
Durch and have a server at a Franchist for (Charles)					1		
Probenahmeparameter Feststoffe (Staub): - Zählerstand Gasuhr Messbeginn:	[m³]	30,860	32,003	33,170		i r	
- Zählerstand Gasuhr Messende:	[m³]	31,994	33,160	34,351		1	
- Kalibrierfaktor Gasuhr	fuel	0,996	0,996	0,996			
- Abgesaugtes Teilgasvolumen:	[m³]	1,129	1,152	1,176		+ + + + + + + + + + + + + + + + + + +	
- Mittlerer Unterdruck Gasuhr:	[hPa]	269	267	266			
- Mittlere Temperatur Gasuhr:	[°C]	40	40	40			
- Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,717	0,733	0,749			-
- Durchmesser Düse:	[mm]	6	6	6			
- Isokinetischer Faktor:		0,98	1,00	1,03			
Parameter Labor Feststoffe (Staub) : - Bestimmungsgrenze:	[mg/Pr.]	Die Auswaage S	onde wurde Ma		f die Einzelmes	sungen verteilt.	
- Bestimmungsgrenze:	[mg/m³ *]	0,3	0,40	0,3	-		
0.0	[mg/m]	0,41	0,70	0,40			
Analysenergebnisse Feststoffe (Staub) : Gesamtauswaage	[mg/Pr.]	15,2	30,1	13,9		1	
davon Auswaage Filter	[mg/Pr.]	13,29	26,42	12,14			
davon Auswaage Filter davon Auswaage Sonde	[mg/Pr.]	15,25	20,42	7,3		+	
Anteil Auswaage Sonde je Einzelmesssung	[mg/Pr]	1,9	3,7	1,7			
Feldblindwert	[mg/Pr.]	< 0,3	715	7.		* *	
Blindwerte umgerechnet auf abgesaugte Volu Feldblindwert	umina: [mg/m³ *]	< 0,41					
Messergebnisse Einzelmessungen Feststoffe	The second second					u lu	
- Massenkonzentrationen	[mg/m³ *]	21,1	41,0	18,5		11 8	
Standardabweichung uc:	[mg/m ³ *]	0,80	1,46	0,71			
 Massenkonz. bez. auf 5 Vol% O2 	[mg/m³ *]	30,0	58,0	26,1			
Standardabweichung uc:	[mg/m³ *]	1,15	2,09	1,01		1	
- Massenstrom:	[kg/h]	0,547	1,064	0,480			
Standardabweichung uc:	[kg/h]	0,025	0,048	0,022			
Messergebnisse Zusammenfassung Feststof	fe (Staub):						
Messung 1 bis 3		MW	MIN	MAX	Bemerkun	gen	
- Massenkonzentrationen	[mg/m³ *]	26,9	18,5	41,0	MW = Mitte	lwert	
Standardabweichung uc:	[mg/m³ *]	0,99	0,71	1,46	MIN = Minir	nalwert	
- Massenkonz. bez. auf 5 Vol% O2	[mg/m³ *]	38,0	26,1	58,0	MAX = Max	imalwert	
Standardabweichung uc:	[mg/m³ *]	1,42	1,01	2,09	n.n. = klein	er Bestimmungsg	renze
AND AND A STREET AND ADDRESS OF THE AND ADDRESS OF THE ADDRESS OF	D/L1	0.007	0,480	1,064	Dio Mittohu	ertberechnung erf	olat mit
- Massenstrom:	[kg/h]	0,697	0,400	1,004	Die Mineiwi	er were criming en	oigt iiiit

**) Normzustand (feucht), (273 K; 1013 hPa)

Seite 27 von 36 Zeichen/Erstelldatum: IS-US1-MAN/Ba / 08.11.2024 Berichtsnummer: 3997528_Notstromdiesel_BASF_EMI_BER

Anhang: Mess- und Rechenwerte

- Berichts-Nr.:	3997528	- Anlage:	Kraftwerk	
- Firma:	BASF	- Quelle:	A014 (N91)	0.0

Messkomponente:

Kohlenmonoxid (CO)

Probenahmeparameter Randbedingungen:

 Anzahl durchgeführter Einzelmessungen: 				3	The same of the sa
- Bemerkung:					
- Messung-Nr.: - Messdatum:		1 15.10.24	2 15.10.24	3	
				15.10.24	
- Uhrzeit :	von: bis:	9:10 9:40	9:44 10:14	10:18 10:48	
- Luftdruck:	[hPa]	1006	1006	1006	
- Mittleres Abgasvolumen (N, tr): Standardabweichung uc:	[m³/h] [m³/h]	25.971 731	25.971 731	25.971 731	
- Mittlere Abgastemperatur	[°C]	489	492	513	
- Bezugssauerstoff:	[Vol%]	5,0	5,0	5,0	
- Mittlerer Sauerstoffgehalt: Standardabweichung uc:	[Vol%] [Vol%]	9,8 0,08	9,7 0,07	9,7 0,07	
- gemäß 44. BlmSchV wird immer Sauerstoffbezogen		ja	ja	ja	- 146 - 42

Parameter Messgerät Kohlenmonoxid (CO):

Parameter wessgerat Kontenmonoxid (
- Eingestellter Messbereich 0 bis	[mg/m³ *]	1250	1250	1250	
- Bestimmungsgrenze:	[mg/m³ *]	6,3	6,3	6,3	
Auswertung Kohlenmonoxid (CO):					
Messwert	[mg/m³ *]	271.4	270.7	275.5	

Messergebnisse Einzelmessungen Kohlenmonoxid (CO):

- Massenkonzentrationen	[mg/m³ *]	271,4	270,7	275,5	
Standardabweichung uc:	[mg/m³ *]	16,98	16,92	17,15	
- Massenkonz. bez. auf 5 Vol% O2	[mg/m³ *]	386,1	383,2	389,5	
Standardabweichung uc:	[mg/m³ *]	24,31	24,07	24,36	
- Massenstrom:	[kg/h]	7,048	7,030	7,155	
Standardabweichung uc:	[kg/h]	0,483	0,481	0,488	

Messergebnisse Zusammenfassung Kohlenmonoxid (CO):

Messung 1 bis 3		MW	MIN	MAX	Bemerkungen
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	272,5 17,02	270,7 16,92	275,5 17,15	MW = Mittelwert MIN = Minimalwert
- Massenkonz. bez. auf 5 Vol% O2 Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	386,3 24,25	383,2 24,07	389,5 24,36	MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze
- Massenstrom: Standardabweichung uc:	[kg/h] [kg/h]	7,078 0,484	7,030 0,481	7,155 0,488	Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze
*) Normzustand (trocken), (273 K, 1013 hPa)		**) Normzusta	nd (feucht), (2)	73 K; 1013 hPa)

Seite 28 von 36 Zeichen/Erstelldatum: IS-US1-MAN/Ba / 08.11.2024 Berichtsnummer: 3997528_Notstromdiesel_BASF_EMI_BER

Anhang: Mess- und Rechenwerte

- Berichts-Nr.:	3997528	- Anlage:	Kraftwerk	
- Firma:	BASF	- Quelle:	A014 (N91)	0.0

Messkomponente:

NOx als NO2

- Anzahl durchgeführter Einzelmessungen:		3					
- Bemerkung:							
- Messung-Nr.:		1	2	3	- 10		
- Messdatum:		15.10.24	15.10.24	15.10.24			
- Uhrzeit :	von: bis:	9:10 9:40	9:44 10:14	10:18 10:48			
- Luftdruck:	[hPa]	1006	1006	1006			
- Mittleres Abgasvolumen (N, tr): Standardabweichung uc:	[m³/h] [m³/h]	25.971 731	25.971 731	25.971 731			
- Mittlere Abgastemperatur	[°C]	489	492	513			
- Bezugssauerstoff:	[Vol%]	5,0	5,0	5,0			
Mittlerer Sauerstoffgehalt: Standardabweichung uc:	[Vol%] [Vol%]	9,8 0,08	9,7 0,07	9,7 0,07			
- gemäß 44. BlmSchV wird immer Sauerstoffbezogen		ja	ja	ja	- 14	1/2	

Parameter Messgerät NOx als NO2 :

rarameter messyerat wox als woz.					
 Eingestellter Messbereich 0 bis 	[mg/m³ *]	5125	5125	5125	
- Bestimmungsgrenze:	[mg/m³ *]	25,6	25,6	25,6	
Auswertung NOx als NO2 :					
Messwert	[ma/m³ *]	2 638 6	2 671 8	2 661 4	

Messergebnisse Einzelmessungen NOx als NO2:

- Massenkonzentrationen	[mg/m³ *]	2.638,6	2.671,8	2.661,4	
Standardabweichung uc:	[mg/m³ *]	199,55	203,71	202,41	
- Massenkonz. bez. auf 5 Vol% O2	[mg/m³ *]	3.754,3	3.782,8	3.763,1	
Standardabweichung uc:	[mg/m³ *]	285,18	289,37	287,14	
- Massenstrom:	[kg/h]	68,527	69,389	69,119	
Standardabweichung uc:	[kg/h]	5,529	5,639	5,605	

Messergebnisse Zusammenfassung NOx als NO2:

Messung 1 bis 3		MW	MIN	MAX	Bemerkungen
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	2.657,3 201,89	2.638,6 199,55	2.671,8 203,71	MW = Mittelwert MIN = Minimalwert
- Massenkonz. bez. auf 5 Vol% O2 Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	3.766,7 287,23	3.754,3 285,18	3.782,8 289,37	MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze
- Massenstrom: Standardabweichung uc:	[kg/h] [kg/h]	69,012 5,591	68,527 5,529	69,389 5,639	Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze
*) Normzustand (trocken), (273 K; 1013 hPa)		**) Normzusta	nd (feucht), (2)	73 K; 1013 hPa)

*) Normzustand (trocken), (273 K; 1013 hPa)

- Berichts-Nr.: 3997528		**	- Anlage:	Kraftwerk			
- Firma: BASF			- Quelle:	A015 (N92)		
Messkomponente:		Feststoffe (Staub)		Out-Stack Planfilter			
Probenahmeparameter Randbedingungen:							
- Anzahl durchgeführter Einzelmessungen:					3		
- Bemerkung:							
- Messung-Nr.:		1	2	3			
- Messdatum:		14.10.24	14.01.24	14.01.24			
- Uhrzeit :	von:	11:46	12:20	12:54			
- Luftdruck:	bis:	12:16 1003	12:50 1004	13:24		-	
- Mittleres Abgasvolumen (N, tr):	[hPa] [m³/h]	24.988	24.988	24.988		-	
Standardabweichung uc:	[m³/h]	703	703	703			
- Mittlere Abgastemperatur	[°C]	503	490	522			
- Bezugssauerstoff:	[Vol%]	5,0	5.0	5.0			
- Mittlerer Sauerstoffgehalt:	[Vol%]	9,2	9,2	9,2			
Standardabweichung uc:	[Vol%]	0,07	0,07	0,07			
- gemäß 44. BlmSchV wird immer Sauerstoffbezogen		ja	ja	ja			
		11 1 1					
Probenahmeparameter Feststoffe (Staub):							
 Zählerstand Gasuhr Messbeginn: 	[m³]	27,486	28,610	29,710			
- Zählerstand Gasuhr Messende:	[m³]	28,598	29,689	30,850			
- Kalibrierfaktor Gasuhr		0,996	0,996	0,996			
- Abgesaugtes Teilgasvolumen:	[m³]	1,108	1,075	1,135			
Mittlerer Unterdruck Gasuhr: Mittlere Temperatur Gasuhr:	[hPa]	253	251 40	251 40			-
Abgesaugtes Teilgasvolumen (N, tr):	[°C]	40 0,715	0,696	0,735		+	
- Abgesaugtes Teligasvolumen (N, tr). - Durchmesser Düse:		6	6	6		+	
- Isokinetischer Faktor:	[mm]	1,02	0,99	1.05		+	
Parameter Labor Feststoffe (Staub) : - Bestimmungsgrenze:	for a /Dx 1	Die Auswaage S			f die Einzelme	ssungen verteilt.	
- Bestimmungsgrenze:	[mg/Pr_] [mg/m³ *]	0,3 0,41	0,3 0,43	0,3 0,40		1	
Analysenergebnisse Feststoffe (Staub) :	Ind.	0,17	0,10	0,10			
Gesamtauswaage	[mg/Pr.]	26,1	8,4	8,7			
davon Auswaage Filter	[mg/Pr.]	22,93	7,39	7,65			
davon Auswaage Sonde	[mg/Pr.]	LL,00	1,00	5,3			
Anteil Auswaage Sonde je Einzelmesssung	[mg/Pr]	3,2	1,0	1,1			
Feldblindwert	[mg/Pr.]	< 0,3				*	
Blindwerte umgerechnet auf abgesaugte Volu							
Feldblindwert	[mg/m³ *]	< 0,41					
Messergebnisse Einzelmessungen Feststoffe							
- Massenkonzentrationen	[mg/m³ *]	36,4	12,0	11,8			
Standardabweichung uc:	[mg/m³ *]	1,31	0,50	0,49			
- Massenkonz. bez. auf 5 Vol% O2	[mg/m³ *]	49,5	16,2	16,0			
Standardabweichung uc:	[mg/m³ *]	1,80	0,68	0,67			
- Massenstrom:	[kg/h]	0,909	0,299	0,294			
Standardabweichung uc:	[kg/h]	0,041	0,015	0,014		1	
Messergebnisse Zusammenfassung Feststoff	e (Staub):	1000	BAIL!	MAY	D	2.5	
Messung 1 bis 3	[m-n/- 9 47	MW	MIN	MAX	Bemerkun		
- Massenkonzentrationen	[mg/m³ *]	20,1	11,8	36,4	MW = Mitte		
Standardabweichung uc:	[mg/m³ *]	0,77	0,49 16,0	1,31 49,5	MIN = Mini MAX = Max		
Macconkonz hoz auf E Val 0/ 00							
- Massenkonz, bez, auf 5 Vol% O2	[mg/m³ *]	27,2	2002	100,000			ronzo
- Massenkonz. bez. auf 5 Vol% O2 Standardabweichung uc: - Massenstrom:	[mg/m³ *] [kg/h]	1,05 0,501	0,67 0,294	1,80	n.n. = klein	er Bestimmungsg ertberechnung erf	

**) Normzustand (feucht), (273 K; 1013 hPa)

Seite 30 von 36 Zeichen/Erstelldatum: IS-US1-MAN/Ba / 08.11.2024 Berichtsnummer: 3997528_Notstromdiesel_BASF_EMI_BER

Anhang: Mess- und Rechenwerte

- Berichts-Nr.:	3997528	- Anlage:	Kraftwerk	
- Firma:	BASF	- Quelle:	A015 (N92)	0.0

Messkomponente:

Kohlenmonoxid (CO)

- Anzahl durchgeführter Einzelmessungen:		3					
- Bemerkung:							
- Messung-Nr.:		1	2	3			
- Messdatum:		14.10.24	14.01.24	14.01.24			
- Uhrzeit :	von: bis:	11:46 12:16	12:20 12:50	12:54 13:24			
- Luftdruck:	[hPa]	1003	1004	1003			
- Mittleres Abgasvolumen (N, tr): Standardabweichung uc:	[m³/h] [m³/h]	24.988 703	24.988 703	24.988 703			
- Mittlere Abgastemperatur	[°C]	503	490	522			
- Bezugssauerstoff:	[Vol%]	5,0	5,0	5,0			
Mittlerer Sauerstoffgehalt: Standardabweichung uc:	[Vol%] [Vol%]	9,2 0,07	9,2 0,07	9,2 0,07			
- gemäß 44. BlmSchV wird immer Sauerstoffbezogen		ja	ja	ja	1411		

- Eingestellter Messbereich 0 bis	[mg/m³ *]	1250	1250	1250	10
- Bestimmungsgrenze:	[mg/m³ *]	6,3	6,3	6,3	
Auswertung Kohlenmonoxid (CO):					
Messwert	[mg/m³ *]	399.3	378.4	349.8	

Messergebnisse Einzelmessungen Kohlenmonoxid (CO):

- Massenkonzentrationen	[mg/m³ *]	399,3	378,4	349,8	
Standardabweichung uc:	[mg/m³ *]	22,74	21,76	20,44	
- Massenkonz. bez. auf 5 Vol% O2	[mg/m³ *]	543,4	512,9	475,5	
Standardabweichung uc:	[mg/m³ *]	31,11	29,65	27,92	
- Massenstrom:	[kg/h]	9,977	9,455	8,740	
Standardabweichung uc:	[kg/h]	0,633	0,605	0,566	

Messergebnisse Zusammenfassung Kohlenmonoxid (CO):

Messung 1 bis 3		MW	MIN	MAX	Bemerkungen
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	375,8 21,65	349,8 20,44	399,3 22,74	MW = Mittelwert MIN = Minimalwert
- Massenkonz. bez. auf 5 Vol% O2 Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	510,6 29,56	475,5 27,92	543,4 31,11	MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze
Massenstrom: Standardabweichung uc:	[kg/h] [kg/h]	9,391 0,601	8,740 0,566	9,977 0,633	Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze
*) Normzustand (trocken), (273 K; 1013 hPa)		**) Normzusta	nd (feucht), (2)	73 K; 1013 hPa)

Seite 31 von 36 Zeichen/Erstelldatum: IS-US1-MAN/Ba / 08.11.2024 Berichtsnummer: 3997528_Notstromdiesel_BASF_EMI_BER

Anhang: Mess- und Rechenwerte

- Berichts-Nr.:	3997528	- Anlage:	Kraftwerk	
- Firma:	BASF	- Quelle:	A015 (N92)	

Messkomponente:

NOx als NO2

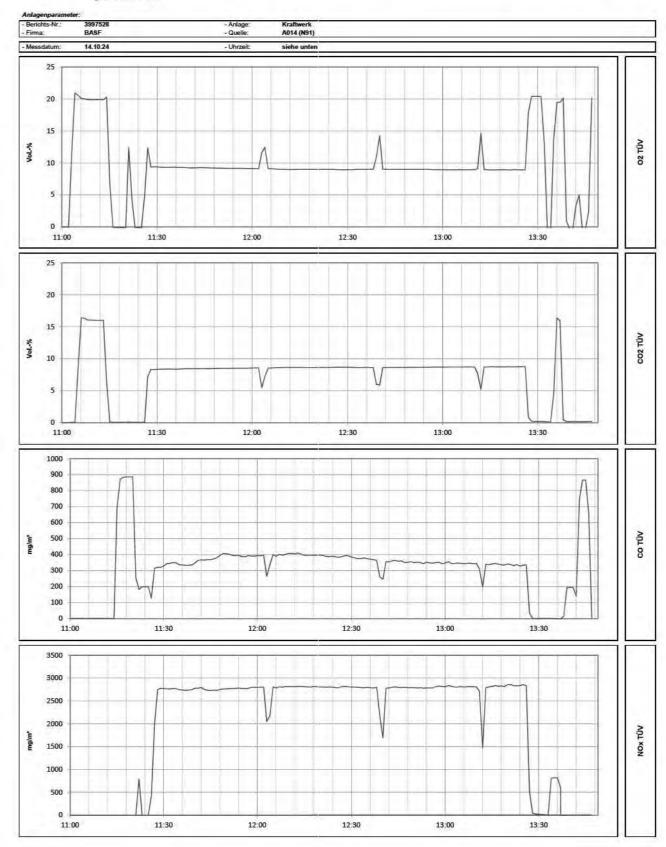
Probenahmeparameter Randbedingungen:

	3					
	1	2	3			
	14.10.24	14.01.24	14.01.24			
von: bis:	11:46 12:16	12:20 12:50	12:54 13:24			
[hPa]	1003	1004	1003			
[m³/h] [m³/h]	24.988 703	24.988 703	24.988 703			
[°C]	503	490	522			
[Vol%]	5,0	5,0	5,0			
[Vol%] [Vol%]	9,2 0,07	9,2 0,07	9,2 0,07			
	ja	ja	ja	11/1/2011		
	bis: [hPa] [m³/h] [m³/h] [°C] [Vol%]	von: 11:46 bis: 12:16 [hPa] 1003 [m³/h] 24.988 [m³/h] 703 [°C] 503 [Vol%] 5,0 [Vol%] 9,2 [Vol%] 0,07	14.10.24 14.01.24 14.01.24 14.01.24 14.01.24 14.01.24 14.01.24 14.01.24 14.01.24 14.01.24 14.01.24 14.01.250 14.01.250 14.00.3 14.00.4 14.00.3 14.00.3 14.00.4 14.00.3	1 2 3		

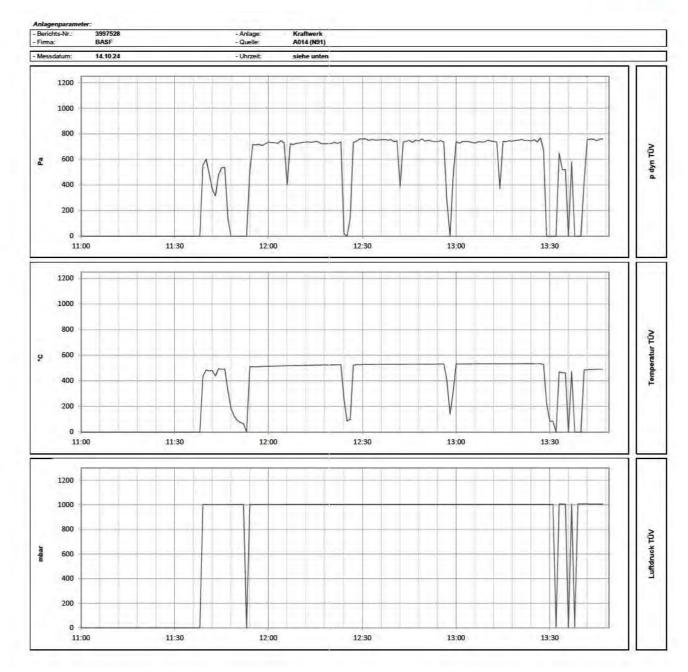
Parameter Messgerät NOx als NO2:

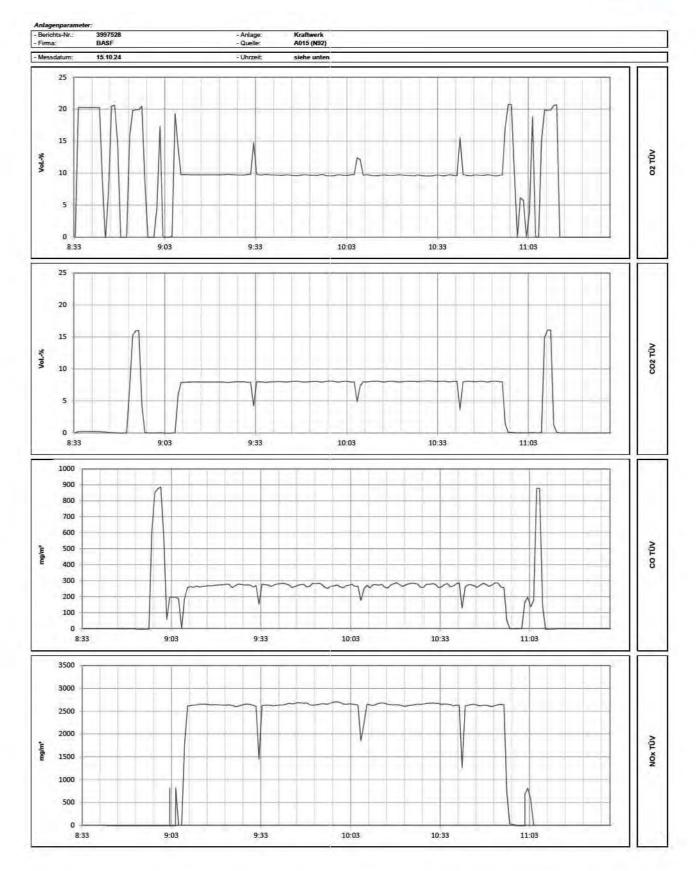
rarameter messyerat wox als woz.						215
 Eingestellter Messbereich 0 bis 	[mg/m³ *]	5125	5125	5125		-1
- Bestimmungsgrenze:	[mg/m³ *]	25,6	25,6	25,6	100	
Auswertung NOx als NO2 :						-
Messwert	[ma/m³ *]	2 795 2	2 808 5	2 831 6		

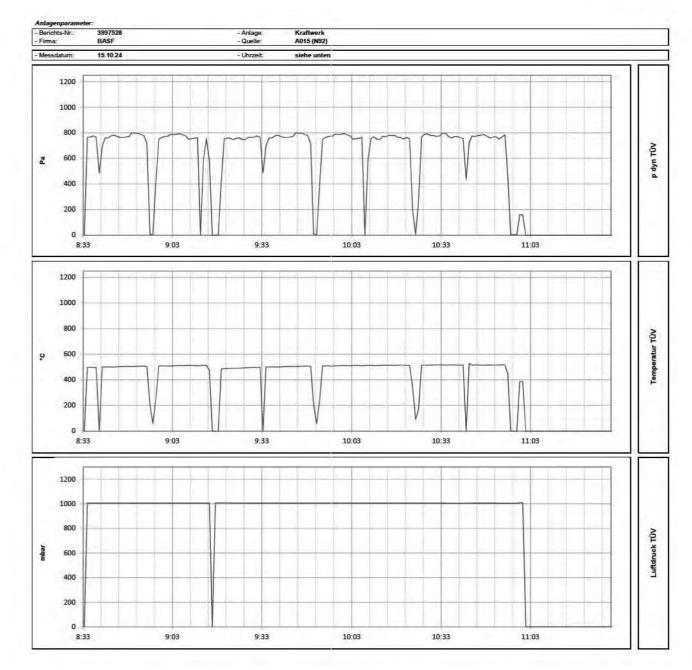
Messergebnisse Einzelmessungen NOx als NO2:


- Massenkonzentrationen	[mg/m³ *]	2.795,2	2.808,5	2.831,6	
Standardabweichung uc:	[mg/m³ *]	219,43	221,17	224,21	
- Massenkonz. bez. auf 5 Vol% O2	[mg/m³ *]	3.803,9	3.807,4	3.849,3	
Standardabweichung uc:	[mg/m³ *]	299,47	300,68	305,65	
- Massenstrom:	[kg/h]	69,846	70,178	70,756	
Standardabweichung uc:	[kg/h]	5,824	5,868	5,945	

Messergebnisse Zusammenfassung NOx als NO2:


Messung 1 bis 3		MW	MIN	MAX	Bemerkungen
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	2.811,8 221,60	2.795,2 219,43	2.831,6 224,21	MW = Mittelwert MIN = Minimalwert
- Massenkonz. bez. auf 5 Vol% O2 Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	3.820,2 301,93	3.803,9 299,47	3.849,3 305,65	MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze
Massenstrom: Standardabweichung uc:	[kg/h] [kg/h]	70,260 5,879	69,846 5,824	70,756 5,945	Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze
*) Normzustand (trocken), (273 K; 1013 hPa)		**) Normzusta	nd (feucht), (2)	73 K; 1013 hPa)


7.2 Grafische Darstellung der zeitlichen Verläufe kontinuierlich gemessener Komponenten



- Berichts-Nr.:	3997528	- Anlage:	Kraftwerk
- Firma:	BASF	- Quelle:	A014 (N91) - A015 (N92)

Prüfgase für die Justierung

Prüfgas	Einheit	Konz.	Hersteller	Zertifikats- Nr	Herstellungs- datum	Stabilität [Monate]
02	Vol%	19,9	Linde	4721397	30.11.2023	36
CO2	Vol%	16	Linde	4721397	30.11.2023	36
CO	ppm	708	Linde	49338869	16.05.2022	36
NO	ppm	400	Linde	1973267	02.05.2023	36

Anhang: Mess- und Rechenwerte

- Berichts-Nr.:	3997528	- Anlage:	Kraftwerk
- Firma:	BASF	- Quelle:	A014 (N91) - A015 (N92)

- Messdatum:	14.10.24	- Uhrzeit:	siehe unten	

Dokumentation Driftberechnung

Messkomponente	02	CO2	co	NOx
Einheit	[Vol%]	[Vol%]	[mg/m³]	[mg/m³]
Messbereichsende	25,00	20,00	1250	5125
Nullpunkt Soll	0,00	0,00	0,00	0,00
Prüfwert Soll	19,90	16,00	885,0	820,0
Uhrzeit vor	11:05	11:05	11:05	11:05
Nullpunkt IST vor Messung	-0,02	0,01	0,00	0,00
Prüfwert IST vor Messung	19,89	15,98	885,0	820,0
Uhrzeit nach	13:36	13:36	13:36	13:36
Nullpunkt IST nach Messung	-0,32	0,14	0,00	0,00
Prüfwert IST nach Messung	19,50	16,41	865,0	813,9
Drift Dauer Minuten	151	151	151	151
Drift Endpunkt %	-0,45	1,87	-2,26	-0,75
Drift Nullpunkt %	-1,51	0,80	0,00	0,00
Drift Korrektur erfolgt	ja	ja	ja	ja

- Messdatum: 15.10.24 - Unizeit: siene unten	- Messdatum:	15.10.24	- Uhrzeit:	siehe unten	
--	--------------	----------	------------	-------------	--

Dokumentation Driftberechnung

Messkomponente	O2	CO2	CO	NOx
Einheit	[Vol%]	[Vol%]	[mg/m³]	[mg/m³]
Messbereichsende	25,00	20,00	1250	5125
Nullpunkt Soll	0,00	0,00	0,00	0,00
Prüfwert Soll	19,90	16,00	885,0	820,0
Uhrzeit vor	08:53	08:53	08:53	08:53
Nullpunkt IST vor Messung	-0,02	0,00	0,00	0,00
Prüfwert IST vor Messung	19,93	16,00	886,3	820,0
Uhrzeit nach	11:03	11:03	11:03	11:03
Nullpunkt IST nach Messung	-0,04	0,02	0,01	0,03
Prüfwert IST nach Messung	19,86	16,08	878,8	811,8
Drift Dauer Minuten	130	130	130	130
Drift Endpunkt %	-0,25	0,37	-0,85	-1,00
Drift Nullpunkt %	-0,10	0,12	0,00	0,00
Drift Korrektur erfolgt	ja	ja	ja	ja

7.3 Hausverfahren

nicht relevant

TÜV SÜD Industrie Service GmbH

Messstelle nach § 29b BlmSchG Westendstraße 199 80686 München Standort Mannheim

ENTWURF Bericht

über die Durchführung von Emissionsmessungen

Deutsche Akkreditierungsstelle D-PL-14153-03-00

Anlage: Schwefelsäure-Sonderprodukte

Betreiber: BASF SE

Standort: Werksgelände, Bau B 508.

67056 Ludwigshafen

Auftragsdatum: 04.04.2024 Datum: 05.12.2024

Bestellzeichen: 1086915423 Unsere Zeichen: IS-US1-MAN/No

Messtermin: 20.08.2024 bis 22.08.2024

Berichtsnummer: 3997510 BASF-Schwefelsäure-Sonder-

produkte_EMI_2024

Aufgabenstellung: Emissionsmessung gemäß Genehmi-

gungsbescheid

Befristete Bekanntgabe: 18.02.2026

Die auszugsweise Wiedergabe des Dokumentes und die Verwendung zu Werbezwecken bedürfen der schriftlichen Genehmigung der TÜV SÜD Industrie Service

Dieses Dokument besteht

aus 49 Seiten. Seite 1 von 49

GmbH.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände.

Zusammenfassung

Quelle	Messkomponente	Einheit	Maximaler Messwert minus Up	Maximaler Messwert plus Up	Emissions- begrenzung	Betriebs- zustand	
Bau 508 A001	SOx als SO2	kg/h	0,0000	0,0003	1,8	siehe 5.1	
B050	H2S	g/h	2,6	3,4	15	siehe 5.1	
B050	SOx als SO2	kg/h	0,30	0,34	1,8	siehe 5.1	
B050	CS2	g/h	8,4	10,0	5		
B050 COS		kg/h	0,0001	0,0001	0,1	siehe 5.1	
B061	H2S	g/h	6,7	8,7	15	siehe 5.1	
B061	SOx als SO2	kg/h	0,31	0,35	1,8	siehe 5.1	
B061	CS2	g/h	7,9	9,5	5	siehe 5.1	
B061	cos	kg/h	n.n.	n.n.	0,1	siehe 5.1	
.n. = kleiner Bes	stimmungsgrenze		Die angegebenen M der Ernissionsbegre		e Bedingungen		

Im Rahmen dieser Messkampagne wurden nur die maximalen Emissionen beim Befüllen der Behälter B050 bzw. B061 messtechnisch erfasst (Details siehe Ziffer 6.4).

Seite 3 von 49 Zeichen/Erstelldatum: IS-US1-MAN/No / 05.12.2024 Berichtsnummer: 3997510_BASF_Schwefelsäure-Sonderprodukte_EMI_2024.docx

Inhaltsverzeichnis

1	Formulierung der Messaufgabe	4
2		
3	Beschreibung der Probenahmestelle	11
4	Mess- und Analyseverfahren, Geräte	16
5	Betriebszustand der Anlage während der Messungen	21
6	Zusammenstellung der Messergebnisse	23
7	Anhang	28

1 Formulierung der Messaufgabe

1.1 Auftraggeber

Firma: BASF SE

Anschrift: Carl-Bosch-Straße 38

1.2 Betreiber

Firma: BASF SE

Anschrift: Carl-Bosch-Straße 38

Arbeitsstätten-Nr.:

1.3 Standort

Anschrift: BASF SE

Carl-Bosch-Straße 38

Gebäude: 67056 Ludwigshafen
A 844, B 508 und B 607

Emittent: Schwefeltank B050

Schwefeltank B061

Auslass A001

1.4 Anlage

Schwefelsäure-Sonderprodukte, Anlage 16.08

1.5 Datum der Messung

Zeitpunkt/Zeitraum der Messung: 20.08.2024 bis 22.08.2024

Datum der letzten Messung September 2021

Datum der nächsten Messung: 2027

1.6 Anlass der Messung

Emissionsmessung entsprechend den Vorgaben des Genehmigungsbescheides

1.7 Aufgabenstellung

Zur Erfüllung der Auflagen des Genehmigungsbescheides in Bezug auf die nachstehend in Kapitel 1.8 aufgeführten Komponenten, beauftragte die oben genannte Firma die gemäß § 29b Bundes-Immissionsschutzgesetz (BImSchG) benannte Messstelle "TÜV SÜD Industrie Service GmbH" mit der Durchführung entsprechender Emissionsuntersuchungen.

Bescheid/Auflagen	
Ausstellende Behörde	Stadtverwaltung Ludwigshafen
Aktenzeichen	4-15F.BI
Ausstelldatum	27.12.2020

Die entsprechenden Passagen aus diesem Bescheid lauten:

Schadstoffe	Anlagenmassenstrom
Schwefeloxid (SO _x , als SO ₂)	1,8 kg/h
Schwefelkohlenstoff CS ₂	5 g/h
Schwefelwasserstoff H ₂ S	15 g/h
Kohlenoxidsulfid COS	0,10 kg/h

Die Emissionsgrenzwerte sind als Masse der emittierten Stoffe, bezogen auf das Volumen des Abgases im Normzustand (273K, 1 013hPa) nach Abzug des Feuchtegehaltes an Wasserdampf zu verstehen.

1.8 Messobjekte

Messkomponente	Anzahl der Einzelmessungen
Schadstoffe	Art der Erfassung / Auslass A001
Schwefeldioxid (SO ₂)	3 à 30 Min.; diskontinuierlich

Messkomponente Schadstoffe	Anzahl der Einzelmessungen Art der Erfassung / Behälter B050/B061
Schwefeldioxid (SO ₂)	3 à 30 Min. je Auslass; diskontinuierlich
Schwefelkohlenstoff (CS ₂)	3 à 30 Min. je Auslass; diskontinuierlich
Schwefelwasserstoff (H ₂ S)	3 à 30 Min. je Auslass; diskontinuierlich
Kohlenoxidsulfid (COS)	3 à 30 Min. je Auslass; diskontinuierlich

Messkomponente Bezugsgrößen und Randparameter	Anzahl der Einzelmessungen Art der Erfassung
Abgasgeschwindigkeit	kontinuierlich registrierend
Abgastemperatur	kontinuierlich registrierend
Druck im Abgaskanal	diskontinuierlich vor jeder Probenahme
Feuchtegehalt	3 à 30 min.

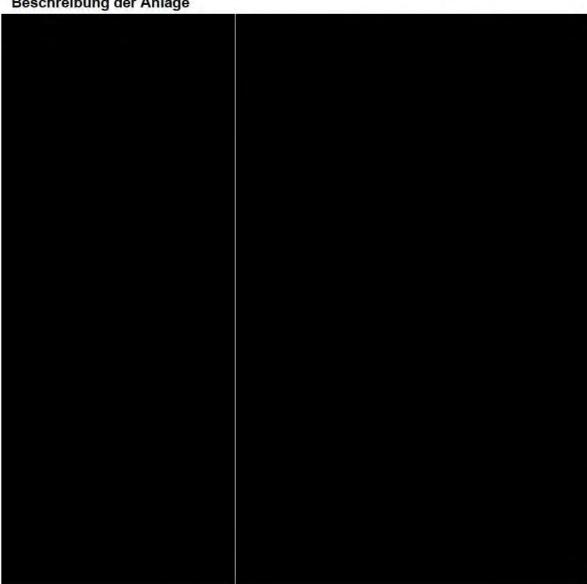
1.9 Ortsbesichtigung vor Messdurchführung

- □ Ortsbesichtigung durchgeführt am:
- keine Ortsbesichtigung durchgeführt, da mit den vorherigen Messungen an dieser Anlage schon befasst.

1.10 Messplanabstimmung

- ☐ keine Messplanabstimmung durchgeführt

1.11	An der Messung beteiligte Personen	
1.12	Beteiligung weiterer Institute keine	
1.13	Fachlich Verantwortliche	


2 Beschreibung der Anlage und der gehandhabten Stoffe

2.1 Bezeichnung der Anlage

Anlage gemäß Nr. 4.1.13 des Anhangs der 4. BlmSchV:

Anlagen zur Herstellung von Stoffen oder Stoffgruppen durch chemische, biochemische oder biologische Umwandlung in industriellem Umfang, ausgenommen Anlagen zur Erzeugung oder Spaltung von Kernbrennstoffen oder zur Aufarbeitung bestrahlter Kernbrennstoffe, zur Herstellung von Säuren wie Chromsäure, Flusssäure, Phosphorsäure, Salpetersäure, Salzsäure, Schwefelsäure, Oleum, schwefelige Säuren

2.2 Beschreibung der Anlage

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Behälter B 050									
Höhe über Grund	15 m								
UTM-E/-N Koordinaten	32458816 / 5485038								
Bauausführung	beheizter Edelstahlbehälter								

Behälter B 061									
Höhe über Grund	15 m								
UTM-E/-N Koordinaten	32458918 / 5484096								
Bauausführung	beheizter Edelstahlbehälter								

Auslass A001								
Höhe über Grund	24 m							
UTM-E/-N Koordinaten	32458975 / 5483863							
Bauausführung	Kunststoffkamin	_						

2.	4	1	Angal	oe c	er	laut	Gene	hm	igur	ngs	besc	heid	mög	liche	en E	insat	zst	off	e

2.5 Betriebszeiten nach Betreiberangaben

2.5.1 Gesamtbetriebszeit

4

2.5.2 Emissionszeit nach Betreiberangaben

entspricht der Gesamtbetriebszeit

2.6 Einrichtung zur Erfassung und Minderung der Emissionen

2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Art der Emissionserfassung

Behälter B 050 und B 061 Die Abgase werden am Behelfskamin erfasst.

Auslass A 001 Die Abgase werden im geschlossenen Abgaskanal

erfasst.

2.6.1.2 Ventilatorkenndaten

Quelle	Auslass A 001
Erfassungselement	Ventilator V 910 A/B
Hersteller	FIMA Maschinenbau GmbH
Volumenstrom	4.000 m³/h (Normzustand)
Drehzahl	2.925 1/min
Leistungsbedarf	6 – 7 KW
Motorleistung	11 KW

2.6.2 Einrichtung zur Verminderung der Emissionen

Behälter B 050 und B 061

Einrichtungen zur Verminderung der Emissionen waren zum Messzeitpunkt nicht vorhanden.

Quelle	Auslass A 001
Waschkolonne	K 916
Hersteller	Harzer Apparatewerke KG
Hersteller-Nr.	70590/2
Baujahr	1989
Waschmedium	H₂SO₄ verdünnt < 5% ig
zulässiger Betriebsüberdruck	0,1 bar
zulässige Betriebstemperatur	75 °C

Quelle	Auslass A 001
Waschkolonne	K 910
Hersteller	PATT + DILTHEY GmbH
Fabrik-Nr.	22645
Baujahr	1978
Waschmedium	Schwefelsäure 96-98 %ig
zulässiger Betriebsüberdruck	0,1 bar
zulässige Betriebstemperatur	120 °C

2.6.3 Einrichtung zur Verdünnung des Abgases

nicht zutreffend

3 Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Quelle	B 050
Lage	im Freien
Höhe über Grund	15 m
Verlauf des Abgaskanals	senkrecht
Abgasrohr-Geometrie / Durchmesser	rund, 0,10 m
Hydraulischer Durchmesser	0,10 m
Messquerschnitt	0,008 m²
freie Einlaufstrecke	0,8 m
freie Auslaufstrecke	0,2 m
≥ 5 D _h Ein- und 2 D _h Auslauf (5 D _h vor Mündung)	Ja, in Bezug zur freien Ein- und Auslauf- strecke. Nein, in Bezug vor Mündung.

Quelle	B 061
Lage	im Freien
Höhe über Grund	15 m
Verlauf des Abgaskanals	senkrecht
Abgasrohr-Geometrie / Durchmesser	rund, 0,10 m
Hydraulischer Durchmesser	0,10 m
Messquerschnitt	0,008 m²
freie Einlaufstrecke	0,8 m
freie Auslaufstrecke	0,2 m
≥ 5 D _h Ein- und 2 D _h Auslauf (5 D _h vor Mündung)	Ja, in Bezug zur freien Ein- und Auslauf- strecke. Nein, in Bezug vor Mündung.

Quelle	A 001	
Lage	im Freien	
Höhe über Grund	24 m	
Verlauf des Abgaskanals	senkrecht	
Abgasrohr-Geometrie / Durchmesser	rund, 0,30 m	
Hydraulischer Durchmesser	0,30 m	
Messquerschnitt	0,071 m²	
freie Einlaufstrecke	> 5 m	

freie Auslaufstrecke	2,2 m	
≥ 5 D _h Ein- und 2 D _h Auslauf (5 D _h vor Mündung)	ja	

3.1.2 Arbeitsfläche und Messbühne

Quelle	B 050 und B 061
dauerhafte Messbühne	ja
Tragfähigkeit i.O.	ja, war zum Messzeitpunkt gegeben
ausreichende Arbeitsfläche und Arbeitshöhe	ja
ausreichender Traversierraum zur Er- reichung aller Messpunkte im Mess- querschnitt	ja
keine Einflüsse durch Umgebungsbedingungen auf Messergebnisse?	ja

Quelle	Auslass A 001
dauerhafte Messbühne	ja
Tragfähigkeit i.O.	ja, war zum Messzeitpunkt gegeben
ausreichende Arbeitsfläche und Arbeitshöhe	ja
ausreichender Traversierraum zur Er- reichung aller Messpunkte im Mess- querschnitt	ja
keine Einflüsse durch Umgebungsbedingungen auf Messergebnisse?	ja

3.1.3 Messöffnungen

Behälter B 050 / B 061
2
20 mm
Bohrung
90° zueinander

Es wurden Behelfskamine errichtet, die auf die beheizten Auslässe auf dem Domdeckel gesetzt wurden.

Quelle	Auslass A 001	
Anzahl	1	
Größe	20 mm	
Ausführung	Bohrung	
Lage am Kanal	4	

3.1.4 Strömungsbedingungen im Messquerschnitt

Quelle	Behälter B 050 und B 061
Winkel Gasstrom zu Mittelachse Abgaskanal < 15 °	ja
keine lokale negative Strömung?	ja
Verhältnis höchste/niedrigste örtliche Geschwindigkeit im Messquerschnitt < 3 : 1	ja
Mindestgeschwindigkeit in Abhängig- keit vom verwendeten Messverfahren	ja (> 0,3 m/s bei Flügelradanemometer)
Es wurden Behelfskamine errichtet, die deckel gesetzt wurden.	e auf die beheizten Auslässe auf dem Dom-

 Quelle
 Auslass A 001

 Winkel Gasstrom zu Mittelachse Abgaskanal < 15 °</td>
 ja

 keine lokale negative Strömung?
 ja

 Verhältnis höchste/niedrigste örtliche Geschwindigkeit im Messquerschnitt < 3 : 1</td>
 ja

 Mindestgeschwindigkeit in Abhängigkeit vom verwendeten Messverfahren
 ja

 (> 0,3 m/s bei Flügelradanemometer)

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

d des kleinen Durchmessers eine Messnetzverdichtung nicht t werden
eine Messnetzverdichtung nicht
empfohlen mit der zuständigen chungsbehörde die verhältnismä- aßnahmen zur Verbesserung der elle zu erörtern.
1

Quelle	Auslass A 001	
Messbedingungen entsprechend DIN EN 15259 erfüllt?	ja	
ergriffene Maßnahmen	keine	
zu erwartende Auswirkungen auf das Messergebnis	keine	
Empfehlungen und Hinweise zur Verbesserung der Messbedingungen	keine	

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte / Messachse	
Geschwindigkeit	1	1	mittig
SO ₂ , H ₂ S, CS ₂ , COS	1	1	mittig

3.2.2	Homogenitätsprüfung
	☐ durchgeführt (siehe Ergebnisse in Kap. 6)
	□ nicht durchgeführt, weil:
	☑ Fläche Messquerschnitt < 0,1 m² (B 050 / B 061 / A 001)
	□ Netzmessung
	☐ liegt vor
	Datum der Homogenitätsprüfung:
	Berichts-Nr.:
	Prüfinstitut:
	Ergebnisse der Homogenitätsprüfung:
	☐ Messung an einem beliebigen Punkt
	Messung an einem repräsentativen Punkt Achse:
	Eintauchtiefe:
	□ Netzmessung
3.2.3	Komponentenspezifische Darstellung
	nicht zutreffend

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Messpunkte Lage im Netz gemäß DIN EN 15259

Messfühler Flügelrad-Anemometer

Messeinrichtung Flügelrad-Anemometer Typ Ex-2A-220

Hersteller Höntzsch
Messbereich 0 bis 20 m/s
Bestimmungsgrenze 0,3 m/s

kontinuierliche Ermittlung ja

4.1.2 Statischer Druck im Abgaskamin

Richtlinie DIN EN 16911-1

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druck-

messmodul FDA

Hersteller Ahlborn, Holzkirchen Messbereich -1250 bis 1250 Pa

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

4.1.4 Abgastemperatur

Richtlinie VDI/VDE 3511 Blatt 2

Messeinrichtung Digitalanzeigeinstrument Typ Almemo 2690 mit

T-Modul FT FZA 9020-FS (NiCr-Ni)

Hersteller Ahlborn, Holzkirchen

Messfühler Thermoelement NiCr-Ni (Typ K)

Messbereich -200 bis +1370°C

kontinuierliche Ermittlung ja

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Richtlinie DIN EN 14790

Ermittlungsmethode Kondensation als Wasser und Adsorption auf

Silikagel

Messeinrichtung Waage, Typ TE 412

Entnahmesonde Edelstahl, Länge 0,5 m, elektrisch beheizt auf

160°C

Partikelfilter Quarzwattefilter an der Sondenspitze, beheizt

durch das Abgas

Gasprobenehmer GS 312

Analyseverfahren Gravimetrie

Messgerät

Hersteller Sartorius

Messbereich 4 bis 40 Vol.-%

4.1.6 Abgasdichte

Bestimmung berechnet unter Berücksichtigung der Abgas-

zusammensetzung, des Luftdrucks, der Abgastemperatur und der Druckverhältnisse im Kanal

4.1.7 Abgasverdünnung

entfällt

4.1.8 Volumenstrom

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Mittlere Abgasgeschwindigkeit

Messverfahren siehe 4.1.1 Messeinrichtung siehe 4.1.1

Querschnittsfläche

Messverfahren Messung mit Messstab

Messeinrichtung Messstab

4.2 Automatische Messverfahren

nicht Bestandteil der Prüfung

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

4.3.1 Messkomponente Schwefeloxide

4.3.1.1 Messverfahren

Richtlinie SOx: DIN EN 14791

Absorption in wässriger H₂O₂-Lösung und io-

nenchromatografische Analyse

4.3.1.2 Probenahme und Probenaufbereitung

Entrahmesonde Edelstahl, Länge 0,5 m, elektrisch beheizt auf

160°C

Partikelfilter Quarzwattefilter an der Sondenspitze, beheizt

durch das Abgas

Absorptionssystem zwei Frittenwaschflaschen in Reihe

Absorptionsmittel 0,3 % H₂O₂-Lösung sowie 3 % H₂O₂-Lösung in

vollentsalztem Wasser

Sorptionsmittelmenge ca. 80 ml

Absaugeinrichtung Desaga GS 312

Abstand Sonde - Absorptionssystem Sondenlänge + ca. 0,1 m

Zeitraum zwischen Probenahme Probentransport in PE-Fläschchen.

Zeit zwischen Probenahme und Analyse ist für diese Komponente nicht qualitätsrelevant

4.3.1.3 Analytische Bestimmung

und Analyse

Verfahren Ionenchromatografie

Probenvorbereitung außer ggf. Verdünnung nicht erforderlich

Gerät DX 1600 Ion Chromatograph Hersteller Dionex GmbH, Idstein

Trennsäule IC-Säule AS22 fast, 150 x 4 mm

Detektor Leitfähigkeitsdetektor

Kalibrierung externer Standard, Mehrpunktkalibrierung Hinweis Die analytische Bestimmung wird im Chemi-

schen Labor der TÜV SÜD Industrie Service GmbH am Standort München, Ridlerstraße

durchgeführt.

4.3.2 Messkomponente Kohlenoxidsulfid (COS)

4.3.2.1 Messverfahren

Richtlinie Gaschromatische Bestimmung mit Kopplung

eines Massenspektrometers

4.3.2.2 Probenahme und Probenaufbereitung

Absorptionssystem Probenahme über eine halbe Stunde im Gas-

sammelgefäß (ca. 1 l Inhalt)

Zeitraum zwischen Probenahme

und Analyse

Zeit zwischen Probenahme und Analyse ist

nicht relevant

4.3.2.3 Analytische Bestimmung

Gerät GC 6890 bzw. 7890

Hersteller Agilent

Trennsäule HP 5, Länge 25 m, Durchmesser 0,25 mm,

Schichtstärke 0,25 µm

Detektor Massenspektrometer Agilent MSD 5975

Nachweisgrenze 1 mg/m3

Kalibrierung externer Standard

4.3.3 Messkomponente Schwefelwasserstoff

4.3.3.1 Messverfahren

Richtlinie VDI 3486 Blatt 2

Absorption in Cadmiumacetat-Lösung, photometrische Analyse

4.3.3.2 Probenahme und Probenaufbereitung

Entnahmesonde Edelstahl, Länge 0,5 m, elektrisch beheizt auf

Partikelfilter Quarzwattefilter an der Sondenspitze, beheizt

durch das Abgas

Absorptionssystem zwei Impingerflaschen in Reihe

Absorptionsmittel Cadmiumacetat-Lösung

Sorptionsmittelmenge ca. 80 ml Absaugeinrichtung Desaga GS 312

Abstand Sonde - Absorptionssystem Sondenlänge + ca. 0,1 m

Zeitraum zwischen Probenahme Probentransport in PE-Fläschchen.

und Analyse Zeit zwischen Probenahme und Analyse < 3

Tage, lichtgeschützte Lagerung

4.3.3.3 Analytische Bestimmung

Verfahren Photometrie

Gerät Photometer Typ UV Mini 1202

Hersteller Shimadzu

Kalibrierung externer Standard, Mehrpunktkalibrierung Die analytische Bestimmung wird im Chemi-Hinweis schen Labor der TÜV SÜD Industrie Service GmbH am Standort München, Ridlerstraße

durchgeführt.

4.3.4 Messkomponente gasförmige organische Verbindungen [CS₂] (GC-MS-Bestimmung)

4.3.4.1 Messverfahren

Richtlinie DIN CEN/TS 13649

> Adsorption an Aktivkohle, gaschromatografische Bestimmung der Einzelkomponenten mit

Kopplung eines Massenspektrometers

4.3.4.2 Probenahme und Probenaufbereitung

Entnahmesonde Edelstahl, Länge 0,5 m, elektrisch beheizt auf

160°C

Partikelfilter Sintermetallfilter an der Sondenspitze, beheizt

durch das Abgas

Absorptionssystem 2 Aktivkohle-Röhrchen Typ B/G in Reihe;

Drägerwerk, Lübeck

Absorptionsmittel Aktivkohle

Sorptionsmittelmenge 950 mg pro Röhrchen Absaugeinrichtung Desaga GS 312

Abstand Sonde - Absorptionssystem Sondenlänge + ca. 0,1 m

Zeitraum zwischen Probenahme < 7 Tage

und Analyse lichtgeschützte, gekühlte Lagerung <25°C

4.3.4.3 **Analytische Bestimmung**

Verfahren GC-Analyse

Probenvorbereitung Desorption von der Aktivkohle

mit CS₂ / n-Propanol-Gemisch

Gerät GC/MS 6890/5973 bzw. 7890/5975

Hersteller Agilent

Trennsäule HP 5, Länge 25 m, Durchmesser 0,25 mm,

Schichtstärke 0,25 µm

Detektor Massenspektrometer Agilent MSD 5975
Kalibrierung externer Standard, Mehrpunktkalibrierung
Hinweis Die analytische Bestimmung wird im Chemi-

schen Labor der TÜV SÜD Industrie Service GmbH am Standort München, Ridlerstraße

durchgeführt.

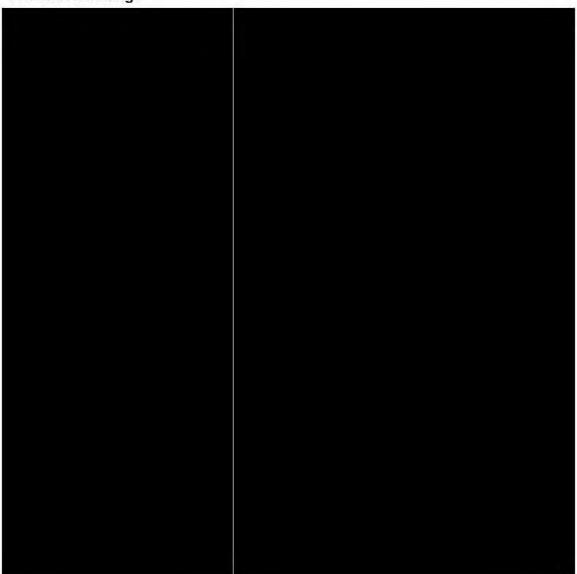
4.4 Messverfahren für partikelförmige Emissionen

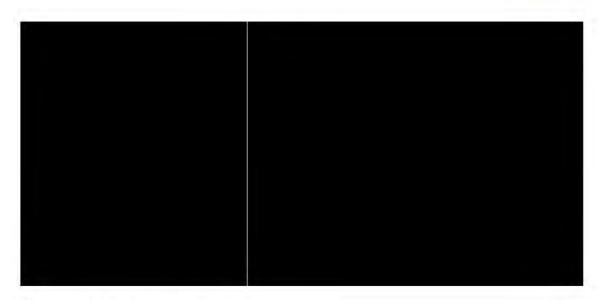
nicht Bestandteil der Prüfung

4.5 Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u. ä.)

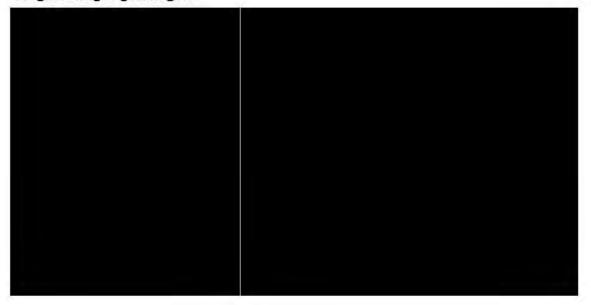
nicht Bestandteil der Prüfung

4.6 Geruchsemissionen


nicht Bestandteil der Prüfung


5 Betriebszustand der Anlage während der Messungen

Die Daten zur Beschreibung des Betriebszustandes wurden vom Betreiber zur Verfügung gestellt und auf Plausibilität geprüft. Während der Messung wurden diese Daten stichprobenartig kontrolliert.


5.1 Produktionsanlage

5.2 Abgasreinigungsanlagen

Zusammenstellung der Messergebnisse

6.1 Bewertung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Alle Einzelergebnisse der gemessenen Stoffkomponenten und die für die Ermittlung erforderlichen Bezugsgrößen sind in Tabellenform mit der jeweiligen Messzeit im Anhang Mess- und Rechenwerte aufgeführt.

Massenkonzentrationen

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwer	
Bau 508 A001	SOx als SO2	mgı/m³ N,tr	3 à 30 min	0,9	0,2	1,3	
B050	H2S	mgi/m³ N,tr	3 à 30 min	32,30	23,42	44,74	
B050	SOx als SO2	mgi/m³ N,tr	3 à 30 min	2.944,7	1.160,8	5.738,0	
B050	CS2	mgı/m³ N,tr	3 à 30 min	121,229	111,614	134,112	
B050	cos	mgı/m³ N,tr	3 à 30 min	1,483	1,335	1,632	
B061	H2S	mgı/m³ N,tr	3 à 30 min	49,77	8,43	118,87	
B061	SOx als SO2	mgi/m³ N,tr	3 à 30 min	5.016,3	4.699,7	5.339,8	
B061	CS2	mgı/m³ N,tr	3 à 30 min	130,8	126,8	135,0	
B061	cos	mgi/m³ N,tr	3 à 30 min	1,049	n.n.	1,049	
n. = kleiner Be	estimmungsgrenze		Die angegebenen	Messwerte sind	auf die Bedingung	gen	

der Emissionsbegrenzung bezogen.

Massenströme

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwert
Bau 508 A001	SOx als SO2	[kg/h]	3 à 30 min	0,00011	0,00002	0,00017
B050	H2S	[g/h]	3 à 30 min	2,0	1,3	3
B050	SOx als SO2	[kg/h]	3 à 30 min	0,17	0,08	0,32
B050	CS2	[g/h]	3 à 30 min	7,3	6,2	9,2
B050	cos	[kg/h]	3 à 30 min	0,00009	0,00008	0,00009
B061	H2S	[g/h]	3 à 30 min	3,2	0,5	7,7
B061	SOx als SO2	[kg/h]	3 à 30 min	0,31	0,30	0,33
B061	CS2	[g/h]	3 à 30 min	8,3	7,5	8,7
B061	cos	[kg/h]	3 à 30 min	n.n.	n.n.	n.n.

6.3 Messunsicherheiten

Quelle	Messkomponente	Einheit	y _{max}	Up	y _{max} - Up	y _{max} + Up	Bestimmungsmethode
Bau 508 A001	SOx als SO2	kg/h	0,00017	0,00016 p = 0,95	0,0000	0,0003	x Doppelbestimmung Indirekter Ansatz
B050	H2S	g/lh	3	0,40 p = 0,95	2,6	3,4	Doppelbestimmung x Indirekter Ansatz
B050	SOx als SO2	kg/h	0,32	0,020 p = 0,95	0,30	0,34	x Doppelbestimmung Indirekter Ansatz
B050	CS2	g/lh	9,2	0,80 p = 0,95	8,4	10,0	Doppelbestimmung x Indirekter Ansatz
B050	cos	kg/h	0,00009	0,00000 p = 0,95	0,0001	0,0001	Doppelbestimmung x Indirekter Ansatz
B061	H2S	g/lh	7,7	1,00 p = 0,95	6,7	8,7	Doppelbestimmung x Indirekter Ansatz
B061	SOx als SO2	kg/h	0,330	0,020 p = 0,95	0,31	0,35	x Doppelbestimmung Indirekter Ansatz
B061	CS2	g/lh	8,70	0,80 p = 0,95	7,9	9,5	Doppelbestimmung x Indirekter Ansatz
B061	cos	kg/h	n.n.	0,000 p = 0.95	n.n.	n.n.	Doppelbestimmung x Indirekter Ansatz

6.4 Diskussion der Ergebnisse

Bau 508, A001

Die ermittelten Messergebnisse weisen im Hinblick auf

- die Betriebsbedingungen (Einsatzstoffe im Messzeitraum, Temperaturen etc.),
- die Betriebsweise,
- die Abgasreinigung,
- · den Produktionsablauf,
- die Art und Funktion der Abluftbehandlung und
- · die messtechnischen Abläufe

keine Unplausibilitäten auf.

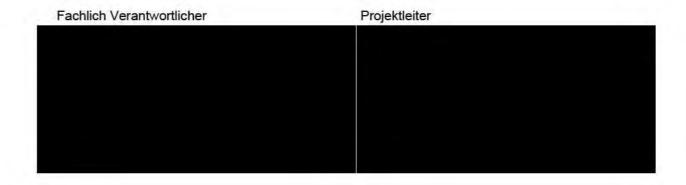
B050/B061

Die ermittelten Messergebnisse weisen im Hinblick auf

- die Betriebsbedingungen (Einsatzstoffe im Messzeitraum, Temperaturen etc.),
- die Betriebsweise,
- den Produktionsablauf und
- · die messtechnischen Abläufe

keine Unplausibilitäten auf.

Im Rahmen dieser Messkampagne wurde bei den Einzelmessungen die Befüllvorgänge messtechnisch erfasst. In den Zeiträumen ohne Anstieg des Füllstands sind die Emissionen deutlich geringer, in diesen Zeiträumen liegt der Abgasvolumenstrom unterhalb der Bestimmungsgrenze des eingesetzten Messverfahrens (siehe Anhang Seiten 46 und 47).


Die Plausibilitätsprüfung erfolgte unter Berücksichtigung folgender Sachverhalte:

- Vorwissen von der in Rede stehenden Anlage
- Vorwissen von vergleichbaren Anlagen
- Vergleich von Messergebnissen miteinander
- Korrelation von Signalverläufen mit Betriebszuständen

Seite 27 von 49
Zeichen/Erstelldatum: IS-US1-MAN/No / 05.12.2024
Berichtsnummer: 3997510_BASF_Schwefelsäure-Sonderprodukte_EMI_2024.docx

Prüflaboratorium Emissionsmessungen/Kalibrierungen Messstelle nach § 29b BlmSchG - DAkkS Akkreditierung nach DIN EN ISO/IEC 17025

7 Anhang

- Crestfaktor Gesamt Profil =

< 1,3 ?

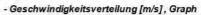
7.1 Mess- und Rechenwerte

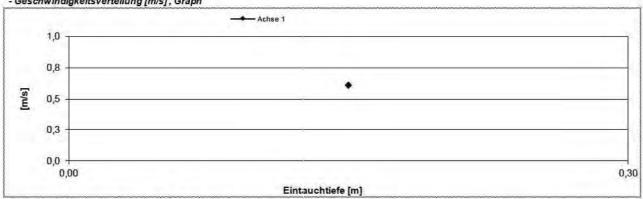
	3997510					- Anlage		Sonderpro	dukte		
- Firma	BASF SE					- Quelle	Bau 508	3 A001			
Probenahmeparamete	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
Messdatum	20.08.202	4				- Uhrzeit	von	8:00	bis	8:30	Uhr
Bemerkung											
Beschreibung Messq	uerschnitt					ş					
Durchmesser		[m]	0,300	u _e =	0,006	gerade Einlaufstrecke gerade Auslaufstrecke		[m]	>5 2,20		
Fläche Messebene A		$[m^2]$	0,0707	$u_c =$	0,002	Messöffnungen		1			
Hydraulischer Ø (HD)		[m]	0,300			Innenwand		glattwand	ig		
Anforderung DIN 1525						- Empfehlung DIN 15					
Abgasströmung Winkel z		hse < 15 °			ja	gerade Einlaufstrecke					ja
keine lokale negative Strömung? v MAX / v MIN mit 1:1 ist < 3:1?					ja	gerade Auslaufstrecke	(2,2 m)	>= 2 x HD (0	,6 m)?		ja
					ja						
Dynamischer Druck > 5 P		00/0	0		ja						
Wandabstand MP 1/0 > 5		3 % V. Ø	£		ja						
Mittlere Abgasparame	•	mol				- Mittlerer Volumenst	rom	r9/L1	4		
Abgastemperatur	Tc	[°C]	22,8	u _c =	0,1	Betriebszustand		[m³/h]	152	u _c =	8
		B/				Norm (feucht)		[m³/h]	138	u _c =	5
Feuchte	*)	[kg/m³]	0,041	u _c =	0,002	Norm (trocken)		[m³/h]	132	u _c =	5
Feuchte	ф H2O	[Vol%]	4,8	u _c =	0,2	Up Norm (trocken)		[m³/h]	9	6,9 %	K = 2
Dichte	p*)	[kg/m³]	1,289						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Dichte	p Betrieb	[kg/m³]	1,146	u _c =	0,006						
uftdruck	P atm	[Pa]	99.890	u _c =	173						
Statischer Druck	P stat	[Pa]	-10	u _c =	0,9						
Absolutdruck	Pc	[Pa]	99.880	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	0,2	u _o =	0,0						
Geschwindigkeit	υ	[m/s]	0,60	uc =	0,03	- Korrektur mittlere G	eschwir	diakeit (W	andeffekte	<u>-</u> }	
Sauerstoff	·······	[Vol.%]	18,5	u _c =	0,6	Ausgleichsfaktor für W		••••••			
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig mittlere Geschwindigk	0,995			0,60	m/s
		22.220	81,5			Entsprechend sind aud			s kominiert	10000	1103
Deet als Stickstoff		11/01 %1				Enspreend and duc	ardic vo	idi iici Su Oiii	- Konigicit	-	
	and /273 k	[Vol.%]		on.							
Rest als Stickstoff) bezogen auf Normzusta		C; 1013 hF	a), trocke	en							
		C; 1013 hF	a), trocke								
) bezogen auf Normzusta Geschwindigkeitsvert		C; 1013 hF	a), trocke	en — Achs	e 1		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
) bezogen auf Normzusta		C; 1013 hF	a), trocke		e 1		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				•••••
) bezogen auf Normzusta Geschwindigkeitsverte 1,0		C; 1013 hF	a), trocke		e 1						
) bezogen auf Normzusta Geschwindigkeitsvert		C; 1013 hF	a), trocke		e 1						
) bezogen auf Normzusta Geschwindigkeitsverte 1,0 0,8		C; 1013 hF	a), trocke		e 1						
) bezogen auf Normzusta Geschwindigkeitsverte 1,0 0,8		C; 1013 hF	a), trocke		e 1	*					
) bezogen auf Normzustz Geschwindigkeitsverte 1,0 0,8		C; 1013 hF	a), trocke		e 1	*					
) bezogen auf Normzusta Geschwindigkeitsverte 1,0 0,8		C; 1013 hF	a), trocke		e 1	*					
) bezogen auf Normzusta Geschwindigkeitsverte 1,0 0,8		C; 1013 hF	a), trocke		e 1	*					
) bezogen auf Normzustz Geschwindigkeitsverte 1,0 0,8		C; 1013 hF	a), trocke		e 1	*					
1,0 0,8 0,3		C; 1013 hF	a), trocke		e 1	*					0,
) bezogen auf Normzusta Geschwindigkeitsverte 1,0 0,8 0,5 0,3 0,0		C; 1013 hF	a), trocke			• chtiefe [m]					0,
) bezogen auf Normzusta Geschwindigkeitsverte 1,0 0,8 0,5 0,3 0,0 0,00	eilung [m/s	K; 1013 hF	-da, trocke			chtiefe [m]					0,
) bezogen auf Nomzusta Geschwindigkeitsverte 1,0 0,8 0,5 0,3 0,0 0,00 Geschwindigkeitsverte	eilung [m/s	(; 1013 hF), Graph	-da, trocke			chtiefe [m]					0,
) bezogen auf Normzustz Geschwindigkeitsverte 1,0 0,8 0,5 0,3 0,0 0,00 Geschwindigkeitsverte Mes	eilung [m/s	(; 1013 hF <i>j, Graph</i> 1	-da, trocke			chtiefe [m]				The state of the s	0,
) bezogen auf Normzusta Geschwindigkeitsverte 1,0 0,8 0,8 0,5 0,0 0,00 Geschwindigkeitsverte Mes Eintaucht	eilung [m/s	(; 1013 hFs], Graph 1 0,15	-da, trocke			chtiefe [m]					0,
) bezogen auf Normzusta Geschwindigkeitsverte 1,0 0,8 0,8 0,5 0,0 0,00 Geschwindigkeitsverte Mes Eintaucht	eilung [m/s	(; 1013 hF <i>j, Graph</i> 1	-da, trocke			chtiefe [m]					0,
) bezogen auf Normzusta - Geschwindigkeitsverte 1,0 0,8 0,5 0,3 0,0 0,00 Geschwindigkeitsverte Mes Eintaucht	eilung [m/s	(; 1013 hFs], Graph 1 0,15	-da, trocke			chtiefe [m]					0,
) bezogen auf Normzustz Geschwindigkeitsverte 1,0 0,8 0,8 0,5 0,0 0,00 Geschwindigkeitsverte Mes Eintaucht	eilung [m/s	(; 1013 hFs], Graph 1 0,15	-da, trocke			chtiefe [m]					0,
) bezogen auf Nomzusta Geschwindigkeitsverte 1,0 0,8 0,8 0,5 0,3 0,0 0,00 Geschwindigkeitsverte Mes Eintaucht	eilung [m/s	(; 1013 hFs], Graph 1 0,15	-da, trocke			chtiefe [m]					0,

- Schiefe Gesamt Profil =

< 1,2 ?

nein


Anhang Me	ess- und	Rechenwerte
-----------	----------	-------------

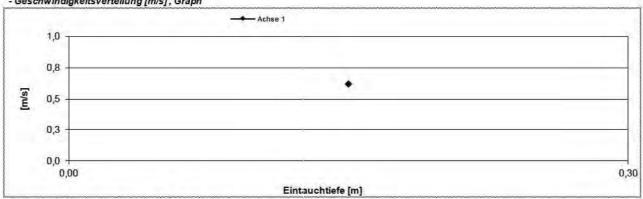

Annang Mess- und I	Rechenwerte										
- Bericht-Nr.	3997510					- Anlage	H2SO4-	Sonderpro	dukte		
- Firma	BASF SE					- Quelle	Bau 508	3 A001			
- Probenahmeparan	neter vor Ort										
- Messdatum	20.08.2024		~~~~~~		***************************************	- Uhrzeit	von	8:32	bis	9:02	Uhr
- Bemerkung											
- Beschreibung Mes	squerschnitt										
Durchmesser		[m]	0,300	u _c =	0,006	gerade Einlaufstrecke		[m]	>5		
						gerade Auslaufstrecke		[m]	2,20		
Fläche Messebene A		[m²]	0,0707	u _c =	0,002	Messöffnungen		1			
Hydraulischer Ø (HD)		[m]	0,300			Innenwand		glattwand	ig		
- Anforderung DIN 1	5259 (6.2) / DIN	13284	-1			- Empfehlung DIN 15	259				
Abgasströmung Wink	el zur Hauptachs	e < 15	0		ja	gerade Einlaufstrecke	(>5 m) >	= 5 x HD (1,	5 m)?		ja
keine lokale negative	Strömung?				ia	gerade Auslaufstrecke	(2.2 m)	>= 2 x HD (0).6 m)?		ja

Mittlere Abgasparameter		Mittlerer Velumenetrem	
Wandabstand MP 1/0 > 5 cm bzw. > 3 % v. Ø?	ja		
Dynamischer Druck > 5 Pa ?	ja		
υ MAX / υ MIN mit 1 : 1 ist < 3 : 1 ?	ja		
keine lokale negative Strömung?	ja	gerade Auslaufstrecke (2,2 m) >= 2 x HD (0,6 m)?	ja
Abgasströmung Winkel zur Hauptachse < 15 °	ja	gerade Einlaufstrecke (>5 m) >= 5 x HD (1,5 m)?	ja

- Mittlere Abgasparar	neter	A CONTRACTOR			A.M. A	- Mittlerer Volumenstrom		OPO NO DE LO DE DE LO DE L	v 4.0.4.0021 v 0.00000 4.02	
Abgastemperatur	Tc	[°C]	26,4	u _c =	0,1	Betriebszustand Norm (feucht)	[m³/h] [m³/h]	154 139	u _c = u _c =	9 5
Feuchte	*)	[kg/m³]	0,045	u _c =	0,002	Norm (trocken)	[m³/h]	131	u _c =	5
Feuchte	ф H2O	[Vol%]	5,3	u _c =	0,2	Up Norm (trocken)	[m³/h]	9	6,9 %	K=2
Dichte	p*)	[kg/m³]	1,289							
Dichte	p Betrieb	[kg/m³]	1,130	u _c =	0,006					
Luftdruck	P atm	[Pa]	99.890	u _c =	173					
Statischer Druck	P stat	[Pa]	-10	u _c =	0,9					
Absolutdruck	Pc	[Pa]	99.880	u _c =	173					
Dynamischer Druck	ΔΡ	[Pa]	0,2	u _c =	0,0					
Geschwindigkeit	U	[m/s]	0,61	uc =	0,03	- Korrektur mittlere Gesch	windigkeit (Wa	ndeffekte	e)	
Sauerstoff		[Vol.%]	18,5	u _c =	0,6	Ausgleichsfaktor für Wandflä	ichen			
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig 0,99 mittlere Geschwindigkeit v (l			0,61	m/s
Rest als Stickstoff		[Vol.%]	81,5			Entsprechend sind auch die	Volumenströme	korrigiert		

^{*)} bezogen auf Normzustand, (273 K; 1013 hPa), trocken

- Geschwindigkeitsverteilung [m/s] , Tabelle


Messpunkt	1					-
Eintauchtiefe [m]	0,15					
Achse 1	0,61					***************************************

- Bericht-Nr.	3997510					- Anlage	H2SO4-S	onderpro	dukte		
- Firma	BASF SE					- Quelle	Bau 508	A001			
- Probenahmeparame	eter vor Ort										
- Messdatum	20.08.202	24				- Uhrzeit	von	9:04	bis	9:34	Uh
- Bemerkung											
- Beschreibung Mess	querschnitt	t									
Durchmesser		[m]	0,300	u _c =	0,006	gerade Einlaufstrecke		[m]	>5		
Economic Company		2-2	1		2452	gerade Auslaufstrecke		[m]	2,20		
Fläche Messebene A		[m²]	0,0707	u _c =	0,002	Messöffnungen		1			
Hydraulischer Ø (HD)		[m]	0,300			Innenwand		glattwand	g		
- Anforderung DIN 15	·····	***************************************	***************************************			- Empfehlung DIN 15	·····				
Abgasströmung Winke	ACTIVITIES OF PROPERTY	thse < 15°	7		ja	gerade Einlaufstrecke					ja
keine lokale negative S v MAX / v MIN mit 1 : 1					ja	gerade Auslaufstrecke	(2,2 m) >	2 x HD (0	,6 m)?		ja
Dynamischer Druck > 5	The second second				ja						
Wandabstand MP 1/0		206 4 0	2		ja ja						
- Mittlere Abgasparan		3 70 4. 90			Ja	- Mittlerer Volumenst					
Abgastemperatur	Tc	[°C]	28.6	u _c =	0,1	Betriebszustand		[m³/h]	157	u _c =	9
riogadicinperatur	10	101	20,0	uc -	0,1	Norm (feucht)		[m³/h]	140	u _c =	5
Feuchte	*)	[kg/m³]	0,034	u _c =	0,001	Norm (trocken)		[m³/h]	134	u _c =	5
Feuchte	ф H2O	[Vol%]	4,0	u _c =	0,2	Up Norm (trocken)		[m³/h]	10	7,1 %	K=2
Dichte	p*)	[kg/m³]	1,289			<u> </u>					
Dichte	p Betrieb	[kg/m³]	1,128	u _c =	0,006						
Luftdruck	P atm	[Pa]	99.890	u _c =	173						
Statischer Druck	P stat	[Pa]	-10	u _c =	0,9						
Absolutdruck	Pc	[Pa]	99.880	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	0,2	u _c =	0,0						
Geschwindigkeit	υ	[m/s]	0,62	uc =	0,03	- Korrektur mittlere G	eschwind	digkeit (W	andeffekte	e)	
Sauerstoff		[Vol.%]	18,5	u _c =	0,6	Ausgleichsfaktor für W	andflächer	1			
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig	0,995				
					4.00	mittlere Geschwindigk	eit v (komi	giert)		0,62	m/s
Rest als Stickstoff		[Vol.%]	81,5			Entsprechend sind aud			kominiert	G. C.	

*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

- Geschwindigkeitsverteilung [m/s], Tabelle

Messpunkt	1					-
Eintauchtiefe [m]	0,15					
Achse 1	0,62					***************************************
-						

*) Normzustand (trocken), (273 K; 1013 hPa)

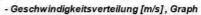
Berichts-Nr.: Firma:	3997510 BASF SE			Anlage:Quelle:	Schwefels Bau 508 A	äure-Sonderpro 001	dukte
Messkompone	nte:		SOx als S	02			
robenahmer	parameter Randbedingungen.						
	geführter Einzelmessungen:		-		3		
Bemerkung:	3				- 4		
Messung-Nr.	5		1	2	3		
Messdatum:			20.08.24	20.08.24	20.08.24	4 1	
Uhrzeit:		von:	8:00	8:32	9:04		
1 01 1		bis:	8:30	9:02	9:34		
Luftdruck:	jasvolumen (N, tr):	[hPa]	999	999 131	999 134		
Standardaby		[m³/h] [m³/h]	5	5	5		
Stariuaruauw	reichung uc.	In wil	- 0		3		
Abgasreinigung	vorhanden?		ja	ja	ja		
	ONLY ACTION OF PARTY.		-		-		
	parameter SOx als SO2:	F 91	0.000	0.000 [0.000		
	Gasuhr Messbeginn: Gasuhr Messende:	[m³]	0,000 0,050	0,000 0,051	0,000 0,052		
Kalibrierfakto	745 A 75 A	[m³]	0,050	0,051	0,052		
	Teilgasvolumen:	[m³]	0,978	0,049	0,050		
ribgeoddgio	rengastounien.	[111]	0,010	0,010	0,000		Y
Mittlere Tem	peratur Gasuhr:	[°C]	19	21	23		
	Teilgasvolumen (N, tr):	[m³] *	0,045	0,045	0,046		
arameter La	bor SOx als SO2 :						
Bestimmung	sgrenze:	[mg/Pr.]	0,01	0,01	0,01		
Bestimmung	sgrenze:	[mg/m³ *]	0,2	0,2	0,2		
nalysenerge	bnisse SOx als SO2 :						
Gesamtprobe	2	[mg/Pr.]	0,01	0,05	0,06		
Feldblindwer	ť	[mg/Pr.]	< 0,01				
llindwerte ur	ngerechnet auf abgesaugte V	folumina:					
Feldblindwer			< 0,2				
lessergebnis	sse Einzelmessungen SOx als	s SO2:					
Massenkonz		[mg/m³ *]	0,2	1,1	1,3		
Standardabw	eichung uc:	[mg/m³ *]	0,62	0,65	0,66		
Massenstron	n:	[kg/h]	0,00002	0,00014	0,00017		
Standardabw	eichung uc:	[kg/h]	0,00008	0,00008	0,00008		
	sse Zusammenfassung SOx a	als SO2:					
Messung 1	bis 3	V	MW	MIN	MAX	Bemerkungen	
Massenkonz	entrationen	[mg/m³ *]	0,9	0,2	1,3	MW = Mittelwert	9 -
Standardabw	eichung uc:	[mg/m³ *]	0,64	0,62	0,66	MIN = Minimalwe	
						MAX = Maximaly	
						n n = kleiner Re	stimmungsgrenze
-							
Massenstron Standardabw		[kg/h] [kg/h]	0,00011	0,00002 0,00008	0,00017 0,00008		rechnung erfolgt mit

**) Normzustand (feucht), (273 K; 1013 hPa)

2,99 m/s

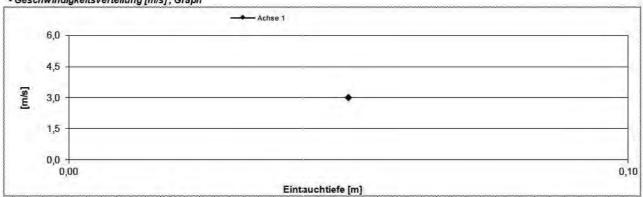
Anhang Mess- und Re	chenwerte
---------------------	-----------

- Bericht-Nr.	3997510			,		- Anlage	H2SO4	-Sonderpro	dukte		
- Firma	BASF SE	=				- Quelle	B050				
- Probenahmeparame	eter vor Ort										
- Messdatum	21.08.20	24				- Uhrzeit	von	8:30	bis	9:00	Uhr
- Bemerkung											
- Beschreibung Mess	querschnit	t									
Durchmesser		[m]	0,100	u _c =	0,002	gerade Einlaufstrecke gerade Auslaufstrecke		[m] [m]	0,80 0,20		
Fläche Messebene A		[m²]	0,0079	u _c =	0,000	Messöffnungen		2	1357		
Hydraulischer Ø (HD)		[m]	0,100			Innenwand		glattwand	ig		
- Anforderung DIN 15	259 (6.2) / D	IN 13284	-1			- Empfehlung DIN 15	259				
Abgasströmung Winke	ALTO A CARLO SECTION	chse < 15	9		ja	gerade Einlaufstrecke	(0,8 m) >	>= 5 x HD (0	,5 m) ?		ja
keine lokale negative S					ja	gerade Auslaufstrecke	(0,2 m)	>= 2 x HD (0	1,2 m)?		ja
v MAX / v MIN mit 1 : 1					ja						
Dynamischer Druck > 5					ja						
Wandabstand MP 1/0	> 5 cm bzw. 3	> 3 % v. Ø	?		nein						
- Mittlere Abgasparan	neter	~~~~~				- Mittlerer Volumenst	rom		~~~~~~		
Abgastemperatur	Tc	[°C]	116,9	$u_c =$	0,6	Betriebszustand		[m³/h]	84	u _c =	5
						Norm (feucht)		[m³/h]	58	u _c =	2
Feuchte	*)	[kg/m³]	0,038	u _c =	0,002	Norm (trocken)		[m³/h]	56	u _c =	2
Feuchte	ф Н2О	[Vol%]	4,5	u _c =	0,2	Up Norm (trocken)		[m³/h]	4	7,0 %	K=2
Dichte	p*)	[kg/m³]	1,259								
Dichte	p Betrieb	[kg/m³]	0,853	u _c =	0,005						
Luftdruck	P atm	[Pa]	100.280	u _c =	173						
Statischer Druck	P stat	[Pa]	-10	u _c =	0,9	***************************************					
Absolutdruck	Pc	[Pa]	100.270	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	3,8	u _c =	0,2						
Geschwindigkeit	ט	[m/s]	3,00	uc =	0,15	- Korrektur mittlere G	eschwi	ndigkeit (W	andeffekte	e)	
Sauerstoff		[Vol.%]	1,0	u _c =	0,0	Ausgleichsfaktor für W	andfläch	en			
						{					


*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

[Vol.%]

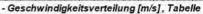
[Vol.%]


0,0

99,0

Kohlendioxid

Rest als Stickstoff


0,0

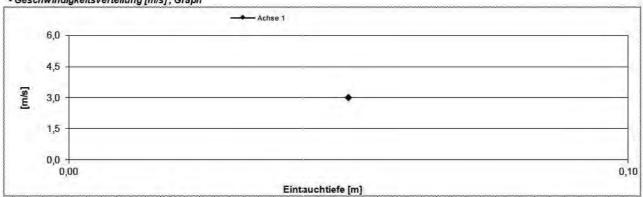
glattwandig

0,995

Entsprechend sind auch die Volumenströme korrigiert.

mittlere Geschwindigkeit v (korrigiert)

Messpunkt	1					
Eintauchtiefe [m]	0,05					
Achse 1	3,00					
					1	*
uinterature pipere						



Anhang Mess- und Rechenwerte

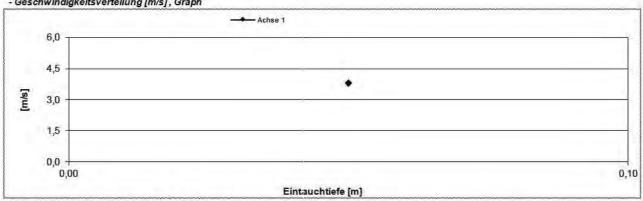
- Bericht-Nr.	3997510					- Anlage	H2SO4-	Sonderpro	dukte		
- Firma	BASF SE					- Quelle	B050				
- Probenahmeparam	***************************************										
- Messdatum	21.08.202	24				- Uhrzeit	von	9:07	bis	9:37	Uh
- Bemerkung											
- Beschreibung Mess	squerschnitt										
Durchmesser		[m]	0,100	u _c =	0,002	gerade Einlaufstrecke		[m]	0,80		
			2000			gerade Auslaufstrecke		[m]	0,20		
Fläche Messebene A		[m²]	0,0079	u _c =	0,000	Messöffnungen		2			
Hydraulischer Ø (HD)		[m]	0,100			Innenwand		glattwand	g		
- Anforderung DIN 18	······	·····	·····			- Empfehlung DIN 15	·······		······································		
Abgasströmung Winke	ALTO ALVANORATION	hse < 15 °			ja	gerade Einlaufstrecke					ja
keine lokale negative S					ja	gerade Auslaufstrecke	(0,2 m)	>= 2 x HD (0	,2 m)?		ja
υ MAX / υ MIN mit 1 : 1	1000				ja	www					
Dynamischer Druck > 9 Wandabstand MP 1/0		20.00	2		ja	***					
······································		2 70 V. W	· · · · · · · · · · · · · · · · · · ·		nein	- Mittlerer Volumenst					
 Mittlere Abgasparar Abgastemperatur 	***************************************	1901	116.3		0,6	Betriebszustand	rom	[m³/h]	84		
Abgastemperatur	Тс	[°C]	110,3	u _c =	0,0			5000		u _c =	5
						Norm (feucht)		[m³/h]	59	u _c =	2
Feuchte	*)	[kg/m³]	0,038	u _c =	0,002	Norm (trocken)		[m³/h]	56	u _c =	2
Feuchte	ф H2O	[Vol%]	4,5	u _c =	0,2	Up Norm (trocken)		[m³/h]	4	7,0 %	K=2
Dichte	p*)	[kg/m³]	1,259								
Dichte	p Betrieb	[kg/m³]	0,855	u _c =	0,005						
Luftdruck	P atm	[Pa]	100.280	u _c =	173						
Statischer Druck	P stat	[Pa]	-10	u _c =	0,9						
Absolutdruck	Pc	[Pa]	100.270	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	3,8	u _c =	0,2	www					
Geschwindigkeit	D	[m/s]	3,00	uc =	0,15	- Korrektur mittlere G	eschwir	digkeit (W	andeffekte	e)	
Sauerstoff		[Vol.%]	1,0	u _c =	0,0	Ausgleichsfaktor für W	***************************************				
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig	0.995				
A MANAGE AND A STORY			1	-6	16.150	mittlere Geschwindigk		igiert)		2.99	m/s
Rest als Stickstoff		[Vol.%]	99.0			Entsprechend sind aud			kominiert		

*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

- Geschwindigkeitsverteilung [m/s] , Tabelle Messpunkt Eintauchtiefe [m] 0,05 Achse 1 3,00 - Crestfaktor Gesamt Profil = < 1,3 ? - Schiefe Gesamt Profil = ja < 1,2 ? nein

Anhang	Mace	undl	Danhar	wanta
Annana	wess-	unai	Kecner	iwerte

- Bericht-Nr.	3997510					- Anlage		Sonderpro	dukte		
- Firma	BASF SE					- Quelle	B050				
- Probenahmeparam	eter vor Ort										
- Messdatum	21.08.202	24				- Uhrzeit	von	10:52	bis	11:22	Uh
- Bemerkung											•••••
- Beschreibung Mess	squerschnitt										
Durchmesser		[m]	0,100	u _c =	0,002	gerade Einlaufstrecke gerade Auslaufstrecke		[m] [m]	0,80		
Fläche Messebene A		[m²]	0,0079	u _c =	0,000	Messöffnungen		2	125		
Hydraulischer Ø (HD)		[m]	0,100			Innenwand		glattwand	g		
- Anforderung DIN 15	5259 (6.2) / D	IN 13284	-1	XIIX		- Empfehlung DIN 15	259				
Abgasströmung Winke	l zur Hauptac	hse < 15	0		ja	gerade Einlaufstrecke	(0,8 m)>	= 5 x HD (0,	5 m) ?		ja
keine lokale negative Strömung? ja				gerade Auslaufstrecke	(0,2 m)	= 2 x HD (0	,2 m)?		ja		
v MAX / v MIN mit 1 : 1	V-5-7 /				ja						
Dynamischer Druck > 5					ja						
Wandabstand MP 1/0	> 5 cm bzw. >	3 % v. Ø	?		nein						
- Mittlere Abgasparan						- Mittlerer Volumens	rom				
Abgastemperatur	Tc	[°C]	125,0	u _c =	0,6	Betriebszustand		[m³/h]	107	$u_c =$	6
						Norm (feucht)		[m³/h]	73	$u_c =$	3
						Norm (trocken)		[m³/h]	69	u _c =	2
						Up Norm (trocken)		[m³/h]	-5	7,0 %	K=2
Dichte	p*)	[kg/m³]	1,259								
Dichte	p Betrieb	[kg/m³]	0,836	u _c =	0,004						
Luftdruck	P atm	[Pa]	100.280	u _c =	173						
Statischer Druck	P stat	[Pa]	-10	u _c =	0,9						
Absolutdruck	Pc	[Pa]	100.270	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	6,0	u _c =	0,3						
Geschwindigkeit	U	[m/s]	3,80	uc =	0,19	- Korrektur mittlere G	eschwir	digkeit (W	andeffekte	2)	
Sauerstoff		[Vol.%]	1,0	u _c =	0,0	Ausgleichsfaktor für W	andfläche	en			
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig mittlere Geschwindigk	0,995			3,78	m/s
						The state of the s	(37		2,.0	11


*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

[Vol.%]

99,0

- Geschwindigkeitsverteilung [m/s], Graph

Rest als Stickstoff

Entsprechend sind auch die Volumenströme korrigiert.

- Geschwindigkeitsverteilung	[m/s], Tabelle	
------------------------------	----------------	--

Messpunkt	1					
Eintauchtiefe [m]	0,05					
Achse 1	3,80					

- Massenstrom:

Standardabweichung uc:

*) Normzustand (trocken), (273 K; 1013 hPa)

Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze

3,0

0,2

- Berichts-Nr.: 3997510 - Firma: BASF SE			Anlage:Quelle:	Schwefels B050	äure-Sonderprodukte	
Messkomponente:		H2S				
Probenahmeparameter Randbedingungen						
Anzahl durchgeführter Einzelmessungen:		-		3	· ·	
Bemerkung:						
Messung-Nr.:		1	2	3		
Messdatum:		21.08.24	21.08.24	21.08.24		
Uhrzeit :	von:	8:30	9:07	10:52		
	bis:	9:00	9:37	11:22		
- Luftdruck;	[hPa]	1003	1003	1003		
- Mittleres Abgasvolumen (N, tr):	[m³/h]	56	56	69		
Standardabweichung uc:	[m³/h]	2	2	2		
				- 5		
- Abgasreinigung vorhanden ?		nein	nein	nein		

Probenahmeparameter H2S:	F-93	0.000	0.000	0.000		
- Zählerstand Gasuhr Messbeginn: - Zählerstand Gasuhr Messende:	[m³]	0,000	0,000	0,000		
	[m³]	0,053	0,056	0,042		-
Kalibrierfaktor Gasuhr	F 91	1,003	1,003	1,003		_
Abgesaugtes Teilgasvolumen:	[m³]	0,053	0,056	0,042		-
- Mittlere Temperatur Gasuhr:	[°C]	21	22	23		+
- Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,049	0,051	0,038		
333	6-7					
		-				
Parameter Labor H2S :				- 1		
- Bestimmungsgrenze:	[mg/Pr.]	0,10	0,10	0,10		
- Bestimmungsgrenze:	[mg/m³ *]	2,05	1,95	2,63		
Analysenergebnisse H2S:	1		1		-	-
Gesamtprobe	[mg/Pr.]	1,40	1,20	1,70		
Feldblindwert	[mg/Pr.]	0,12				
Blindwerte umgerechnet auf abgesaugte \	/olumina:					
Feldblindwert	[mg/m³ *]	2,46				
Messergebnisse Einzelmessungen H2S:						
- Massenkonzentrationen	[mg/m³ *]	28,73	23,42	44,74		
Standardabweichung uc:	[mg/m³ *]	2,011	1,639	3,131		
Massenstrom:	[g/h]	1,6	1,3	3,0	+	
Standardabweichung uc:	[g/h]	0,1	0,1	0,2		
Messergebnisse Zusammenfassung H2S:	1 10 3					
Messung 1 bis 3		MW	MIN	MAX	Bemerkungen	
- Massenkonzentrationen	[mg/m³ *]	32,30	23,42	44,74	MW = Mittelwert	
Standardabweichung uc:	[mg/m³ *]	2,260	1,639	3,131	MIN = Minimalwert	
	E 3 1	_,	.,,,,,,,	-1.51	MAX = Maximalwert	
					n.n. = kleiner Bestimmung	isarenze
					The second secon	3

[g/h]

[g/h]

2,0

0,1

1,3

0,1

**) Normzustand (feucht), (273 K; 1013 hPa)

*) Normzustand (trocken), (273 K; 1013 hPa)

Berichts-Nr.: 3997510 Firma: BASF SE			Anlage:Quelle:	Schwefels B050	äure-Sonderprodukte	
Messkomponente:		SOx als S	5 (2)			
Probenahmeparameter Randbedingunger		OO.K GIS O				
Anzahl durchgeführter Einzelmessungen:		-		3	r.	
Bemerkung:				Ĭ		
Messung-Nr.:		1	2	3		
Messdatum:		21.08.24	21.08.24	21.08.24		
Uhrzeit :	von:	8:30	9:07	10:52		
	bis:	9:00	9:37	11:22		
Luftdruck:	[hPa]	1003	1003	1003		
Mittleres Abgasvolumen (N, tr):	[m³/h]	56	56	69		
Standardabweichung uc:	[m³/h]	2	2	2		4
		- "		, i		
Abgasreinigung vorhanden ?		nein	nein	nein		
The state of the s		T.GILL	7,511	11307		
robenahmeparameter SOx als SO2:		an.				ri .
Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000		-
Zählerstand Gasuhr Messende:	[m³]	0,053	0,056	0,042		
Kalibrierfaktor Gasuhr		1,003	1,003	1,003		
Abgesaugtes Teilgasvolumen:	[m³]	0,053	0,056	0,042		
Mittlere Temperatur Gasuhr:	[°C]	21	22	23		
Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,049	0,051	0,038	-	
arameter Labor SOx als SO2 :						
Bestimmungsgrenze:	[mg/Pr.]	0,015	0,015	0,015	4	
Bestimmungsgrenze:	[mg/m³ *]	0,3	0,2	0,3		1 :-
nalysenergebnisse SOx als SO2 :						
Gesamtprobe	[mg/Pr.]	94,300	294,000	44,100		
Feldblindwert	[mg/Pr.]	0,015				
lindwerte umgerechnet auf abgesaugte	Volumina:					
Feldblindwert	[mg/m³ *]	0,3				
lessergebnisse Einzelmessungen SOx a	Is SO2					
	[mg/m³ *]	1.935,4	5.738,0	1.160,8		
Massenkonzentrationen	[mg/m³ *]	67,97	200,30	41,01		
					100	
Standardabweichung uc:	[kg/h]	0,10	0,32	0,08		
Standardabweichung uc: Massenstrom:		0,10 0,00	0,32 0,01	0,08 0,00		
Standardabweichung uc: Massenstrom: Standardabweichung uc:	[kg/h] [kg/h]		1000	100 TOOL		
Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung SOx	[kg/h] [kg/h]		1000	100 TOOL	Bemerkungen	
Standardabweichung uc: Massenstrom: Standardabweichung uc: Tessergebnisse Zusammenfassung SOx Messung 1 bis 3	[kg/h] [kg/h]	0,00	0,01	0,00	Bemerkungen MW = Mittelwert	
Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung SOx Messung 1 bis 3	[kg/h] [kg/h] als SO2:	0,00	0,01 MIN	0,00 MAX	MW = Mittelwert MIN = Minimalwert	
Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung SOx Messung 1 bis 3 Massenkonzentrationen	[kg/h] [kg/h] als SO2: [mg/m³ *]	0,00 MW 2.944,7	0,01 MIN 1.160,8	0,00 MAX 5.738,0	MW = Mittelwert MIN = Minimalwert MAX = Maximalwert	asarenze
Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung SOx Messung 1 bis 3 Massenkonzentrationen	[kg/h] [kg/h] als SO2: [mg/m³ *]	0,00 MW 2.944,7	0,01 MIN 1.160,8	0,00 MAX 5.738,0	MW = Mittelwert MIN = Minimalwert	

**) Normzustand (feucht), (273 K; 1013 hPa)

Anhang:	Mess-	und	Rechenwerte
---------	-------	-----	-------------

- Berichts-Nr.: 3997510 - Firma: BASF SE			- Anlage: - Quelle:	Schwefels B050	säure-Sonderprodukte	
Messkomponente:		CS:2				
Probenahmeparameter Randbedingungen	:					
- Anzahl durchgeführter Einzelmessungen:		-		- 1	3	
- Bemerkung:		1-3-1				
- Messung-Nr.:		1	2	3	- 9	
- Messdatum:		21.08.24	21.08.24	21.08.24		
- Wessuardin.	von:	8:30	9:07	10:52		
- Offizer:	bis:	9:00	9:37	11:22		
- Luftdruck:				1003		
Luttdruck. Mittleres Abgasvolumen (N, tr):	[hPa]	1003	1003			
	[m³/h]	56	56	69		
Standardabweichung uc:	[m³/h]	2	2	2		9
Late Car						
- Abgasreinigung vorhanden ?		nein	nein	nein		
Prohanahmanaramatar 052						
Probenahmeparameter CS2: - Zählerstand Gasuhr Messbeginn:	Fm31	0,000	0,000	0,000		1
그 가는 물이 가는 사이 가는 아이는 이 가는 사람이 느낌이 가는 것이 없어요? 이 그 사람들이 살아지는데 그 것이다.	[m³]	2000	SS - 20 2 10 10 10 10 10 10 10 10 10 10 10 10 10	and the same of th		
- Zählerstand Gasuhr Messende:	[m³]	0,032	0,022	0,028		
- Kalibrierfaktor Gasuhr		1,030	1,030	1,030		
- Abgesaugtes Teilgasvolumen:	[m³]	0,033	0,022	0,028		/-
- Mittlere Temperatur Gasuhr:	[°C]	20	20	21		
- Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,031	0,021	0,026		
Parameter Labor CS2 :						
- Bestimmungsgrenze:	[mg/Pr.]	0,001	0,001	0,001		
- Bestimmungsgrenze:	[mg/m³ *]	0,032	0,048	0,038		
Analysenergebnisse CS2 :						
Gesamtprobe	[mg/Pr.]	3,601	2,301	3,501		
davon Adsorberstufe 1	[mg/Pr.]	3,6	2,3	3,5		
davon Adsorberstufe 2	[mg/Pr.]			< 0,001		
Feldblindwert	[mg/Pr.]	< 0,001				
Blindwerte umgerechnet auf abgesaugte \	/olumina:					
Feldblindwert	[mg/m³ *]	< 0.032				
	į įvigini 1	,,,,,,,,,				
Messergebnisse Einzelmessungen CS2: - Massenkonzentrationen	[mg/m³ *]	117,960	111,614	134,112		
	Control of the contro					100
Standardabweichung uc:	[mg/m³ *]	4,5173	4,2757	5,1321		
- Massenstrom:	[g/h]	6,5	6,2	9,2		
Standardabweichung uc:	[g/h]	0,3	0,3	0,4		1
Messergebnisse Zusammenfassung CS2:		INALAZ	SAIN I	MAY I	Pomorkume	
Messung 1 bis 3		MW	MIN	MAX	Bemerkungen	

Messung 1 bis 3		MW	MIN	MAX	Bemerkungen
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	121,229 4,6417	111,614 4,2757	134,112 5,1321	MW = Mittelwert MIN = Minimalwert
					max = Maximalwe n.n. = kleiner Besti
- Massenstrom:	[g/h]	7,3	6,2	9,2	Die Mittelwertberec
Standardabweichung uc:	[g/h]	0,3	0,3	0,4	ganzer Bestimmung
*) Normzustand (trocken), (273 K; 1013 hPa.)		**) Normzusta	nd (feucht), (27	3 K: 1013 hPa)

	Bemerkungen
	MW = Mittelwert
	MIN = Minimalwert
	MAX = Maximalwert
	n.n. = kleiner Bestimmungsgrenze
	Die Mittelwertberechnung erfolgt mit
	ganzer Bestimmungsgrenze
ø	

*) Normzustand (trocken), (273 K; 1013 hPa)

- Firma: BASF SE			Anlage:Quelle:	Schwefels B050	äure-Sonde	erprodukte	
Messkomponente:		cos					
Probenahmeparameter Randbedingungen:							
 Anzahl durchgeführter Einzelmessungen: 		-		3			
- Bemerkung:				-			í –
- Messung-Nr.:		1	2	3	-		
			-				
- Messdatum:		21.08.24	21.08.24	21.08.24			
- Uhrzeit :	von:	8:30	9:07	10:52			
	bis:	9:00	9:37	11:22			A
- Luftdruck:	[hPa]	1013	1013	1013			
 Mittleres Abgasvolumen (N, tr): 	[m³/h]	56	56	69			
Standardabweichung uc:	[m³/h]	2	2	2			
- Abgasreinigung vorhanden ?		nein	nein	nein			
Surprise Sur			1,001				
Prohonahmonarameter COC.			4	- 4			ļ
Probenahmeparameter COS:	rn	0.000	0.000	0.000			
- Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000			
- Zählerstand Gasuhr Messende:	[m³]	0,000774	0,000774	0,000774			
- Kalibrierfaktor Gasuhr		1,000	1,000	1,000			
- Abgesaugtes Teilgasvolumen:	[m³]	0,000674	0,000674	0,000674		-	
- Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,000674	0,000674	0,000674			
						Г	
	[mg/Pr]	0.0009	0.0009	0.0009			
- Bestimmungsgrenze:	[mg/Pr.] [ma/m³ *]	0,0009	0,0009	0,0009	-		-
- Bestimmungsgrenze: - Bestimmungsgrenze:	[mg/Pr.] [mg/m³ *]	0,0009	0,0009 1,335	0,0009 1,335			
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse COS:	[mg/m³ *]	1,335	1,335	1,335			
- Bestimmungsgrenze: - Bestimmungsgrenze:			-43				
Parameter Labor COS : - Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse COS : - Gesamtprobe	[mg/m³ *]	1,335	1,335	1,335			
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse COS:	[mg/m³ *]	1,335	1,335	1,335			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse COS: Gesamtprobe Feldblindwert	[mg/m³ *] [mg/Pr.]	0,0011	1,335	1,335			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse COS: Gesamtprobe Feldblindwert	[mg/m³ *] [mg/Pr.] [mg/Pr.]	0,0011	1,335	1,335			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert	[mg/m³ *] [mg/Pr.] [mg/Pr.]	0,0011 < 0,0009	1,335	1,335			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *]	0,0011 < 0,0009	0,0010	0,0009			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *]	1,335 0,0011 < 0,0009 < 1,335	1,335 0,0010	1,335 0,0009			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *]	0,0011 < 0,0009	0,0010	0,0009			
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142	1,335 0,0010 1,483 0,1038	1,335 0,0009 1,335 0,0934			
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *] [mg/m³ *]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142 0,00009	1,335 0,0010 1,483 0,1038	1,335 0,0009 1,335 0,0934 0,00009			
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142	1,335 0,0010 1,483 0,1038	1,335 0,0009 1,335 0,0934			
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *] [mg/m³ *]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142 0,00009	1,335 0,0010 1,483 0,1038	1,335 0,0009 1,335 0,0934 0,00009			
Bestimmungsgrenze: Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *] [mg/m³ *]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142 0,00009 0,000000	1,335 0,0010 1,483 0,1038 0,00008 0,00000	1,335 0,0009 1,335 0,0934 0,00009 0,00000	Danceline		
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messergebnisse Zusammenfassung COS: Messung 1 bis 3	[mg/m³ *] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142 0,00009 0,000000	1,335 0,0010 1,483 0,1038 0,00008 0,00000	1,335 0,0009 1,335 0,0934 0,00009 0,00000	Bemerkun		
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messung 1 bis 3 Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142 0,00009 0,00000 MW 1,483	1,335 0,0010 1,483 0,1038 0,00000 MIN 1,335	1,335 0,0009 1,335 0,0934 0,00009 0,00000 MAX 1,632	MW = Mitte	lwert	
Bestimmungsgrenze: Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messung 1 bis 3	[mg/m³ *] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142 0,00009 0,000000	1,335 0,0010 1,483 0,1038 0,00008 0,00000	1,335 0,0009 1,335 0,0934 0,00009 0,00000		lwert	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messung 1 bis 3 Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142 0,00009 0,00000 MW 1,483	1,335 0,0010 1,483 0,1038 0,00000 MIN 1,335	1,335 0,0009 1,335 0,0934 0,00009 0,00000 MAX 1,632	MW = Mitte	lwert nalwert	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messergebnisse Zusammenfassung COS: Messung 1 bis 3 - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142 0,00009 0,00000 MW 1,483	1,335 0,0010 1,483 0,1038 0,00000 MIN 1,335	1,335 0,0009 1,335 0,0934 0,00009 0,00000 MAX 1,632	MW = Mitte MIN = Minir MAX = Max	lwert nalwert	grenze
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse COS: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messergebnisse Zusammenfassung COS: Messung 1 bis 3 - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [olumina: [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	1,335 0,0011 < 0,0009 < 1,335 1,632 0,1142 0,00009 0,00000 MW 1,483	1,335 0,0010 1,483 0,1038 0,00000 MIN 1,335	1,335 0,0009 1,335 0,0934 0,00009 0,00000 MAX 1,632	MW = Mitte MIN = Minir MAX = Max n.n. = kleine	lwert nalwert timalwert	

**) Normzustand (feucht), (273 K; 1013 hPa)

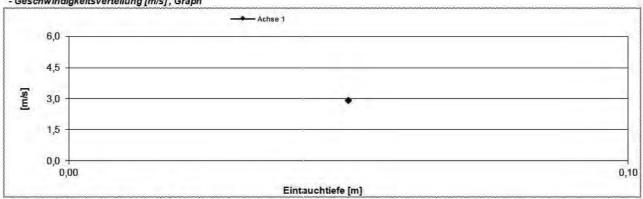
2,89 m/s

Anhana	More und	Rechenwerte
Annang	wess- una	Rechenwerte

- Bericht-Nr.	3997510	1	man / Sulvilla man, and man	Company and a second	a-a-arununus	- Anlage	H2SO4-5	onderpro	dukte	See Contracting Co	A COMPANY AND A
- Firma	BASF SE					- Quelle	B061				
- Probenahmeparam	eter vor Ort										
- Messdatum	22.08.20	24				- Uhrzeit	von	7:49	bis	8:19	Uhr
- Bemerkung											
- Beschreibung Mes	squerschnit	<u> </u>									
Durchmesser		[m]	0,100	$u_c =$	0,002	gerade Einlaufstrecke		[m]	0,80		
Hariottean			0.0070		0.000	gerade Auslaufstrecke		[m]	0,20		
Fläche Messebene A		[m²]	0,0079	u _c =	0,000	Messöffnungen		2	2		
Hydraulischer Ø (HD)		[m]	0,100			Innenwand		glattwand	g		
- Anforderung DIN 18	·····	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			- Empfehlung DIN 15	·······	- 45		~~~~~	
Abgasströmung Winke	THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O	ja	gerade Einlaufstrecke					ja			
keīne lokale negative Strömung? ja v MAX / v MIN mit 1 : 1 ist < 3 : 1 ? ia						gerade Auslaufstrecke	(u,2 m) >	= 2 x HD (0	,2 m) ?		ja
Dynamischer Druck >	Contract of the contract of the				ja						
Wandabstand MP 1/0		3 % v Ø	2		ja nein	and the same of th					
- Mittlere Abgasparai		5 70 4. 20			110111	- Mittlerer Volumenst	rom				
Abgastemperatur	Тс	[°C]	79,5	u _c =	0,4	Betriebszustand		[m³/h]	82	u _r =	4
, ingadiomporaia	1,4	1.51	,-	u _C	٠,٠	Norm (feucht)		[m³/h]	63	u _c =	2
Feuchte	*)	[kg/m³]	0,038	u _c =	0,002	Norm (trocken)		[m³/h]	60	u _c =	2
Feuchte	φ H2O	[Vol%]	4,5	u _c =	0,2	Up Norm (trocken)		[m³/h]	4	7.0 %	K=2
Dichte	p*)	[kg/m³]	1,259								
Dichte	p Betrieb		0,944	u _c =	0.005				••••••••••••	~~~~	
Luftdruck	P atm	[Pa]	100.260		173	***************************************					
Statischer Druck	P stat	[Pa]	-10	u _c =	0,9	www					
Absolutdruck	Pc	[Pa]	100.250		173						
Dynamischer Druck	ΔΡ	[Pa]	4,0	u _c =	0,2						
Geschwindigkeit	υ	[m/s]	2,90	uc =	0,15	- Korrektur mittlere G	eschwin	digkeit (W	andeffekte	e)	••••••
Sauerstoff		[Vol.%]	1,0	u _c =	0,0	Ausgleichsfaktor für W	***************************************			······································	
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig	0,995				

*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

[Vol.%]

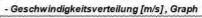

99,0

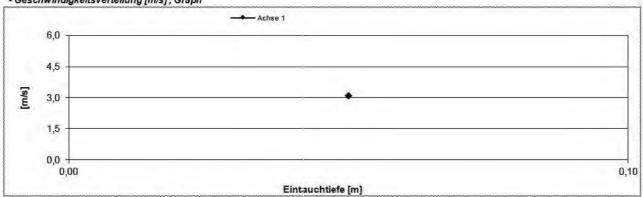
mittlere Geschwindigkeit v (korrigiert)

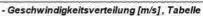
Entsprechend sind auch die Volumenströme korrigiert.

- Geschwindigkeitsverteilung [m/s], Graph

Rest als Stickstoff


- Geschwindigkeitsverteilung [m/s] , Tabelle Messpunkt Eintauchtiefe [m] 0,05 Achse 1 2,90 - Crestfaktor Gesamt Profil = - Schiefe Gesamt Profil = < 1,3 ? ja < 1,2 ? nein




Anhang Mes	s- und Rechenwerte
------------	--------------------

Anhang Mess- und I - Bericht-Nr.	3997510					- Anlage	H2SO4-	Sonderpro	dukte		
- Firma	BASF SE	1				- Quelle	B061	alanta artille			
- Probenahmeparam	eter vor Ort										
- Messdatum	22.08.202	24			······································	- Uhrzeit	von	8:24	bis	8:54	Uh
- Bemerkung											
- Beschreibung Mes	squerschnitt										
Durchmesser		[m]	0,100	u _c =	0,002	gerade Einlaufstrecke gerade Auslaufstrecke		[m] [m]	0,80		
Fläche Messebene A		[m²]	0,0079	u _c =	0,000	Messöffnungen		2	3.7		
Hydraulischer Ø (HD)		[m]	0,100			Innenwand		glattwandi	g		
- Anforderung DIN 1	5259 (6.2) / D	IN 13284	-1			- Empfehlung DIN 15	259				
Abgasströmung Winkel zur Hauptachse < 15 °						gerade Einlaufstrecke	(0,8 m)>	= 5 x HD (0,	5 m) ?		ja
keine lokale negative Strömung?						gerade Auslaufstrecke	(0,2 m) >	>= 2 x HD (0	,2 m)?		ja
υ MAX / υ MIN mit 1 : :					ja						
Dynamischer Druck >		2			ja						
Wandabstand MP 1/0		3 % V. Ø	7		nein	<u></u>					
- Mittlere Abgaspara						- Mittlerer Volumenst	rom				
Abgastemperatur	Tc	[°C]	73,9	u _c =	0,4	Betriebszustand		[m³/h]	87	u _c =	5
						Norm (feucht)		[m³/h]	68	$u_c =$	2
						Norm (trocken)		[m³/h]	65	u _c =	2
						Up Norm (trocken)		[m³/h]	5	7,0 %	K=2
Dichte	p*)	[kg/m³]	1,259								
Dichte	p Betrieb	[kg/m³]	0,959	u _c =	0,005						
Luftdruck	P atm	[Pa]	100.260	u _c =	173						
Statischer Druck	P stat	[Pa]	-10	u _c =	0,9	***************************************					
Absolutdruck	Pc	[Pa]	100.250	u _c =	173	***************************************					
Dynamischer Druck	ΔΡ	[Pa]	4,6	u _c =	0,2	****					
Geschwindigkeit	U	[m/s]	3,10	uc =	0,16	- Korrektur mittlere G	eschwir	ndigkeit (Wa	andeffekte	e)	
Sauerstoff		[Vol.%]	1,0	u _c =	0,0	Ausgleichsfaktor für W	andfläche	en			
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig	0,995				
		-				mittlere Geschwindigk	eit v (kom	igiert)		3,08	m/s
Rest als Stickstoff		[Vol.%]	99.0			Entsprechend sind aud	h die Vol	lumenströme	komigiert	1000	

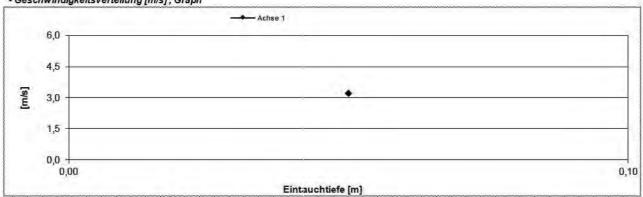
*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

Messpunkt	1					
Eintauchtiefe [m]	0,05					
Achse 1	3,10					
					1	

3,18 m/s

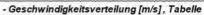
	2200	115.00		1. W. T. T. C.
Anhang	Mess-	und	Reche	nwerte

- Bericht-Nr.	3997510				••••••	- Anlage	H2SO4	-Sonderpro	dukte	······································	***************************************
- Firma	BASF SE	•				- Quelle	B061				
- Probenahmeparam	eter vor Ort										
- Messdatum - Bemerkung	22.08.202	24				- Uhrzeit	VOII	8:59	bis	9:29	Uhr
······································								~~~~~			
- Beschreibung Mess Durchmesser	squerschnin	[m]	0,100	u _c =	0,002	gerade Einlaufstrecke		[m]	0,80		
Durchnesser		firil	0,100	u _c –	0,002	gerade Auslaufstrecke		[m]	0,80		
Fläche Messebene A		[m²]	0,0079	u _c =	0,000	Messöffnungen		2	135		
Hydraulischer Ø (HD)		[m]	0,100			Innenwand		glattwandi	g		
- Anforderung DIN 18	5259 (6.2) / D	IN 13284	-1			- Empfehlung DIN 15	259				
Abgasströmung Winke	el zur Hauptac	hse < 15	0	***************************************	ja	gerade Einlaufstrecke	(0,8 m)	>= 5 x HD (0,	5 m) ?		ja
keine lokale negative Strömung? ja						gerade Auslaufstrecke	(0,2 m)	>= 2 x HD (0	,2 m)?		ja
υ MAX / υ MIN mit 1 = 1 ist < 3 = 1 ? ja											
Dynamischer Druck > 5					ja						
Wandabstand MP 1/0	> 5 cm bzw. >	3 % v. Ø	?		nein						
- Mittlere Abgasparar	neter	***************************************				- Mittlerer Volumenst	rom	······			
Abgastemperatur	Tc	[°C]	71,4	u _c =	0,4	Betriebszustand		[m³/h]	90	u _c =	5
						Norm (feucht)		[m³/h]	71	$u_c =$	2
						Norm (trocken)		[m³/h]	67	u _c =	2
						Up Norm (trocken)		[m³/h]	5	7,0 %	K=2
Dichte	p*)	[kg/m³]	1,259								
Dichte	p Betrieb	[kg/m³]	0,966	u _c =	0,005						
Luftdruck	P atm	[Pa]	100.260	u _c =	173	Ş					
Statischer Druck	P stat	[Pa]	-10	u _c =	0,9						
Absolutdruck	Pc	[Pa]	100.250	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	4,9	u _c =	0,2	vancious					
Geschwindigkeit	U	[m/s]	3,20	uc =	0,16	- Korrektur mittlere G	eschwi	ndigkeit (Wa	andeffekte	e)	
Sauerstoff		[Vol.%]	1,0	u _c =	0,0	Ausgleichsfaktor für W	andfläch	en			
Kohlendioxid		[Vol.%]	0,0	$u_c =$	0,0	glattwandig	0,995				


*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

[Vol.%]

99,0



Rest als Stickstoff

mittlere Geschwindigkeit v (korrigiert)

Entsprechend sind auch die Volumenströme korrigiert.

Messpunkt	1					
Eintauchtiefe [m]	0,05					
Achse 1	3,20					

*) Normzustand (trocken), (273 K; 1013 hPa)

Berichts-Nr.: 3997510 Firma: BASF SE			Anlage:Quelle:	Schwefels B061	äure-Sonderpr	odukte
Messkomponente:		H2S				
Probenahmeparameter Randbed	ingungen:					
Anzahl durchgeführter Einzelmes				3	1	
Bemerkung:						
Messung-Nr.:		1	2	3		
Messdatum:		2:2.08.24	22.08.24	22.08.24	4	
Uhrzeit:	von:	7:49	8:24	8:59		
1.61	bis:	8:19	8:54	9:29		
Luftdruck: Mittleres Abgasvolumen (N, tr):	[hPa] [m³/h]	1003 60	1003 65	1003 67		
Standardabweichung uc:	[m³/h]	2	2	2		
Standardabwelchdrig dc.	formi		2		+	

Abgasreinigung vorhanden?		nein	nein	nein		
Property Company of the Company		-		- 4	4	, and the second
Probenahmeparameter H2S: Zählerstand Gasuhr Messbeginn:	[m3]	0.000	0.000	0.000 [1	Fig.
Zählerstand Gasuhr Messbeginn. Zählerstand Gasuhr Messende:	[m ^s]	0,000 0,040	0,000 0,039	0,000 0,040		
- Kalibrierfaktor Gasuhr	[in-j	1,003	1,003	1,003	-	
- Abgesaugtes Teilgasvolumen:	[m³]	0,040	0,039	0,040		
ribgeodagico rengabrolamen.	0.01	5,0.0	0,000	0,010		
Mittlere Temperatur Gasuhr:	[°C]	16	16	18		
- Abgesaugtes Teilgasvolumen (N,	tr): [m³] *	0,037	0,036	0,037		
Parameter Labor H2S:						
Bestimmungsgrenze:	[mg/Pr.]	0,10	0,10	0,10		
Bestimmungsgrenze:	[mg/m³ *]	2,68	2,76	2,72		
Analysenergebnisse H2S:	1	7				-
Gesamtprobe	[mg/Pr.]	0,82	4,30	0,31		
Feldblindwert	[mg/Pr.]	< 0,1				
Commence of the second	esaugte Volumina:					
	esaugte Volumina: [mg/m³ *]	< 2,68				
Blindwerte umgerechnet auf abg		< 2,68				
Blindwerte umgerechnet auf abg Feldblindwert	[mg/m³ *]	< 2,68				-
Blindwerte umgerechnet auf abg Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen	[mg/m³ *]	22,00	118,87	8,43		
Blindwerte umgerechnet auf abg Feldblindwert Messergebnisse Einzelmessunge	[mg/m³ *]		118,87 8,320	8,43 0,590		<u> </u>
Blindwerte umgerechnet auf abg Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen	[mg/m³ *]	22,00		DC 400 F (2)		
Blindwerte umgerechnet auf abgr Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] en H2S: [mg/m³ *] [mg/m³ *]	22,00 1,540	8,320	0,590		
Blindwerte umgerechnet auf abgreeldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen Standardabweichung uc: Massenstrom:	[mg/m³ *] en H2S: [mg/m³ *] [mg/m³ *] [g/h]	22,00 1,540	8,320 7,7	0,590		
Feldblindwerte umgerechnet auf abge Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc:	[mg/m³ *] en H2S: [mg/m³ *] [mg/m³ *] [g/h] [g/h]	22,00 1,540	8,320	0,590		
Feldblindwerte umgerechnet auf abgreichnet Feldblindwert Messergebnisse Einzelmessunger Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfasse	[mg/m³ *] en H2S: [mg/m³ *] [mg/m³ *] [g/h] [g/h]	22,00 1,540 1,3 0,1	8,320 7,7 0,5	0,590 0,5 0,0		
Feldblindwerte umgerechnet auf abge Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfasse Messung 1 bis 3	[mg/m³ *] en H2S: [mg/m³ *] [mg/m³ *] [g/h] [g/h] ung H2S:	22,00 1,540 1,3 0,1	8,320 7,7 0,5 MIN	0,590 0,5 0,0 MAX	Bemerkungen	
Feldblindwerte umgerechnet auf abge Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfasse Messung 1 bis 3 Massenkonzentrationen	[mg/m³ *] en H2S: [mg/m³ *] [g/h] [g/h] ung H2S:	22,00 1,540 1,3 0,1 MW 49,77	8,320 7,7 0,5 MIN 8,43	0,590 0,5 0,0 MAX 118,87	MW = Mittelwert	
Feldblindwerte umgerechnet auf abge Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfasse Messung 1 bis 3	[mg/m³ *] en H2S: [mg/m³ *] [mg/m³ *] [g/h] [g/h] ung H2S:	22,00 1,540 1,3 0,1	8,320 7,7 0,5 MIN	0,590 0,5 0,0 MAX	MW = Mittelwert MIN = Minimalw	ert
Feldblindwerte umgerechnet auf abge Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfasse Messung 1 bis 3 Massenkonzentrationen	[mg/m³ *] en H2S: [mg/m³ *] [g/h] [g/h] ung H2S:	22,00 1,540 1,3 0,1 MW 49,77	8,320 7,7 0,5 MIN 8,43	0,590 0,5 0,0 MAX 118,87	MW = Mittelwert MIN = Minimalw MAX = Maximal	ert wert
Feldblindwerte umgerechnet auf abge Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfasse Messung 1 bis 3 Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] en H2S: [mg/m³ *] [g/h] [g/h] ung H2S: [mg/m³ *]	22,00 1,540 1,3 0,1 MW 49,77 3,483	8,320 7,7 0,5 MIN 8,43 0,590	0,590 0,5 0,0 MAX 118,87 8,320	MW = Mittelwert MIN = Minimalw MAX = Maximal n.n. = kleiner Be	ert wert estimmungsgrenze
Feldblindwerte umgerechnet auf abge Feldblindwert Messergebnisse Einzelmessunge Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfasse Messung 1 bis 3 Massenkonzentrationen	[mg/m³ *] en H2S: [mg/m³ *] [g/h] [g/h] ung H2S:	22,00 1,540 1,3 0,1 MW 49,77	8,320 7,7 0,5 MIN 8,43	0,590 0,5 0,0 MAX 118,87	MW = Mittelwert MIN = Minimalw MAX = Maximal n.n. = kleiner Be	ert wert estimmungsgrenze rechnung erfolgt mit

**) Normzustand (feucht), (273 K; 1013 hPa)

Massenstrom:

Standardabweichung uc:

*) Normzustand (trocken), (273 K; 1013 hPa)

Anhang: Mess- und Rechenwerte - Berichts-Nr.: 3997510 - Anlage: Schwefelsäure-Sonderprodukte **BASF SE** B061 Firma: - Quelle: SOx als SO2 Messkomponente: Probenahmeparameter Randbedingungen: Anzahl durchgeführter Einzelmessungen: Bemerkung: Messung-Nr. 3 22.08.24 22.08.24 22.08.24 - Messdatum: - Uhrzeit : von: 7:49 8:24 8:59 8:54 8:19 9-29 bis: - Luftdruck: [hPa] 1003 1003 1003 - Mittleres Abgasvolumen (N, tr): $[m^3/h]$ 65 67 60 Standardabweichung uc: [m3/h] 2 2 2 Abgasreinigung vorhanden ? nein nein nein Probenahmeparameter SOx als SO2: - Zählerstand Gasuhr Messbeginn: [m³] 0,000 0,000 0,000 - Zählerstand Gasuhr Messende: 0,040 0,039 0,040 $[m^3]$ - Kalibrierfaktor Gasuhr 1,003 1,003 1,003 0,040 Abgesaugtes Teilgasvolumen: 0,040 0,039 [m³] 16 Mittlere Temperatur Gasuhr: [°C] 16 18 Abgesaugtes Teilgasvolumen (N, tr): [m³] * 0,037 0,036 0,037 Parameter Labor SOx als SO2: - Bestimmungsgrenze: [mg/Pr.] 0,01 0,01 0,01 Bestimmungsgrenze: [mg/m3 *] 0.2 0.2 0,2 Analysenergebnisse SOx als SO2: 199,00 170,00 184,00 [mg/Pr.] Gesamtprobe Feldblindwert [mg/Pr.] 0,022 Blindwerte umgerechnet auf abgesaugte Volumina: Feldblindwert [mg/m³ *] 0,5 Messergebnisse Einzelmessungen SOx als SO2: 5.009,3 [mg/m3 *] 5.339.8 4.699.7 Massenkonzentrationen Standardabweichung uc: 186,44 164,16 174,94 [mg/m3 *] Massenstrom: [kg/h] 0,31 0,30 0,33 Standardabweichung uc: [kg/h] 0,01 0,01 0,01 Messergebnisse Zusammenfassung SOx als SO2: Messung 1 bis 3 MW MIN MAX Bemerkungen Massenkonzentrationen [mg/m3 *] 5.016,3 4.699,7 5.339,8 MW = Mittelwert MIN = Minimalwert 175,18 186,44 Standardabweichung uc: [mg/m3 *] 164,16 MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze

[kg/h]

[kg/h]

0,31

0,01

0,30

0,01

**) Normzustand (feucht), (273 K; 1013 hPa)

0,33

0,01

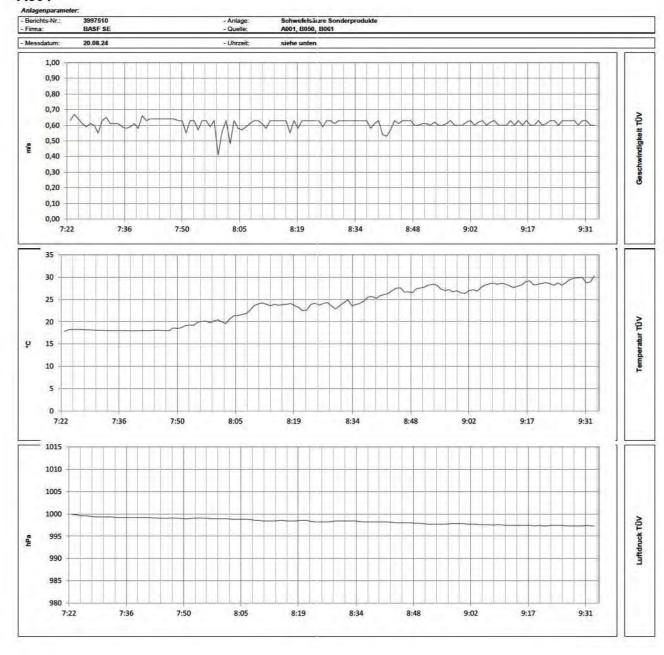
Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze

*) Normzustand (trocken), (273 K; 1013 hPa)

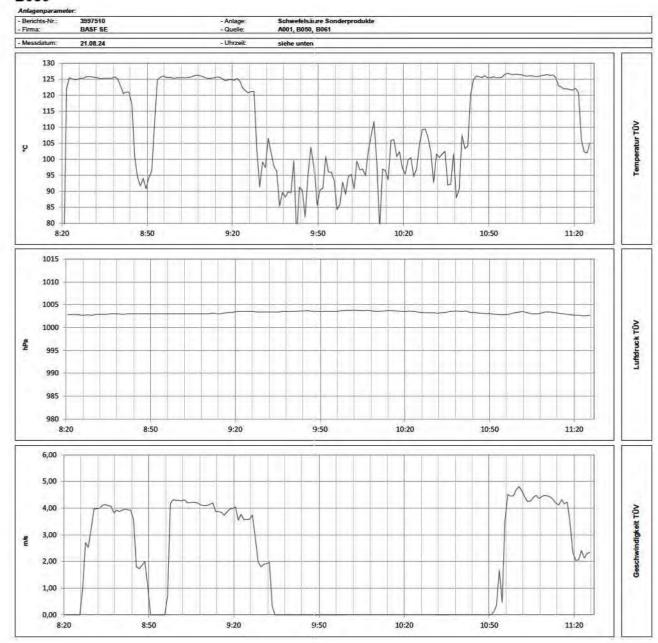
- Berichts-Nr.: 3997510 - Firma: BASF SE		×-	- Anlage: - Quelle:	Schwefels B061	äure-Sonderprodukte	
Messkomponente:		CS:2	124000			
		C3.2				
Probenahmeparameter Randbedingungen - Anzahl durchgeführter Einzelmessungen:	;	I		3		
- Bemerkung:				1		
- Messung-Nr.:		1	2	3		
- Messdatum:		22.08.24	22.08.24	22.08.24		_
- Uhrzeit :	von:	7:49	8:24	8:59		
	bis:	8:19	8:54	9:29		
- Luftdruck:	[hPa]	1003	1003	1003		
- Mittleres Abgasvolumen (N, tr):	[m³/h]	60	65	67		
Standardabweichung uc:	[m³/h]	2	2	2		
		c on				
			1			
Abgasreinigung vorhanden ?		nein	nein	nein		
Probenahmeparameter CS2:		l			4	
- Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000		
- Zählerstand Gasuhr Messende:	[m³]	0,019	0,020	0,021		
- Kalibrierfaktor Gasuhr		1,030	1,030	1,030		
- Abgesaugtes Teilgasvolumen:	[m³]	0,019	0,020	0,021		
- Mittlere Temperatur Gasuhr.	I°C1	14	15	16		
Abgesaugtes Teilgasvolumen (N, tr):	[°C]	0,018	0,019	0.020		_
	[ma/Pr1	0.001	0.001	0.001		
- Bestimmungsgrenze:	[mg/Pr.]	0,001	0,001	0,001 0.05		
- Bestimmungsgrenze: - Bestimmungsgrenze:	[mg/Pr.] [mg/m³ *]	0,001	0,001 0,05	0,001 0,05		
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse CS2:	[mg/m³ *]	0,05	0,05	0,05		
- Bestimmungsgrenze: - Bestimmungsgrenze:	[mg/m³ *] [mg/Pr.]		0,05 2,601	0,05 2,601		
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe	[mg/m³ *]	0,05 2,301 2,3	2,601 2,6	0,05		
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2	[mg/Pr.] [mg/Pr.] [mg/Pr.]	0,05 2,301 2,3 < 0,001	0,05 2,601 2,6	0,05 2,601 2,6		
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1	[mg/m³ *] [mg/Pr.] [mg/Pr.]	0,05 2,301 2,3	0,05 2,601 2,6	0,05 2,601 2,6		
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse CS2: - Gesamtprobe - davon Adsorberstufe 1 - davon Adsorberstufe 2 - Feldblindwert Blindwerte umgerechnet auf abgesaugte	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.]	2,301 2,3 2,3 < 0,001 < 0,001	0,05 2,601 2,6	0,05 2,601 2,6		
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse CS2: - Gesamtprobe - davon Adsorberstufe 1 - davon Adsorberstufe 2 - Feldblindwert	[mg/Pr.] [mg/Pr.] [mg/Pr.]	0,05 2,301 2,3 < 0,001	0,05 2,601 2,6	0,05 2,601 2,6		
- Bestimmungsgrenze: - Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen CS2:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.]	2,301 2,3 < 0,001 < 0,001 < 0,055	2,601 2,6 < 0,001	0,05 2,601 2,6 2,6 0,001		
- Bestimmungsgrenze: - Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen CS2: - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *]	2,301 2,3 < 0,001 < 0,001 < 0,055	0,05 2,601 2,6 < 0,001 135,06	0,05 2,601 2,6 < 0,001 130,57		
- Bestimmungsgrenze: - Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen CS2:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.]	2,301 2,3 < 0,001 < 0,001 < 0,055	2,601 2,6 < 0,001	0,05 2,601 2,6 2,6 0,001		
Bestimmungsgrenze: Bestimmungsgrenze: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen CS2: Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] [mg/m³ *]	2,301 2,3 < 0,001 < 0,001 < 0,055 126,89 4,857	2,601 2,6 < 0,001 135,06 5,168	0,05 2,601 2,6 < 0,001 130,57 4,997		
Bestimmungsgrenze: Bestimmungsgrenze: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen CS2: Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] [mg/m³ *] [mg/m³ *]	2,301 2,3 < 0,001 < 0,001 < 0,055 126,89 4,857	0,05 2,601 2,6 < 0,001 135,06 5,168	130,57 4,997		
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte 1 Feldblindwert Messergebnisse Einzelmessungen CS2: Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] [mg/m³ *]	2,301 2,3 < 0,001 < 0,001 < 0,055 126,89 4,857	2,601 2,6 < 0,001 135,06 5,168	0,05 2,601 2,6 < 0,001 130,57 4,997		
Bestimmungsgrenze: Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte in Feldblindwert Messergebnisse Einzelmessungen CS2: Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung CS2:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] [mg/m³ *] [mg/m³ *]	2,301 2,3 < 0,001 < 0,001 < 0,055 126,89 4,857 7,5 0,3	0,05 2,601 2,6 < 0,001 135,06 5,168 8,7 0,4	130,57 4,997 8,8 0,4	Bemerkungen	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte in Feldblindwert Messergebnisse Einzelmessungen CS2: Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung CS2: Messung 1 bis 3	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] [mg/m³ *] [mg/m³ *]	2,301 2,3 < 0,001 < 0,001 < 0,055 126,89 4,857 7,5 0,3	2,601 2,6 < 0,001 135,06 5,168 8,7 0,4	0,05 2,601 2,6 < 0,001 130,57 4,997 4,997 8,8 0,4	Bemerkungen MW = Mittelwert	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte in Feldblindwert Messergebnisse Einzelmessungen CS2: Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung CS2: Messung 1 bis 3	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] [mg/m³ *] [mg/m³ *]	2,301 2,3 < 0,001 < 0,001 < 0,055 126,89 4,857 7,5 0,3	0,05 2,601 2,6 < 0,001 135,06 5,168 8,7 0,4	130,57 4,997 8,8 0,4	Bemerkungen MW = Mittelwert MIN = Minimalwert	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte in Feldblindwert Messergebnisse Einzelmessungen CS2: Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung CS2: Messung 1 bis 3 Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] [mg/m³ *] [g/h] [g/h]	2,301 2,3 < 0,001 < 0,001 < 0,055 126,89 4,857 7,5 0,3 MW 130,84	0,05 2,601 2,6 < 0,001 135,06 5,168 8,7 0,4 MIN 126,89	0,05 2,601 2,6 < 0,001 130,57 4,997 4,997 8,8 0,4 MAX 135,06	MW = Mittelwert	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse CS2: Gesamtprobe davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte in Feldblindwert Messergebnisse Einzelmessungen CS2: Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung CS2: Messung 1 bis 3 Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] [mg/m³ *] [g/h] [g/h]	2,301 2,3 < 0,001 < 0,001 < 0,055 126,89 4,857 7,5 0,3 MW 130,84	0,05 2,601 2,6 < 0,001 135,06 5,168 8,7 0,4 MIN 126,89	0,05 2,601 2,6 < 0,001 130,57 4,997 4,997 8,8 0,4 MAX 135,06	MW = Mittelwert MIN = Minimalwert	nze
davon Adsorberstufe 1 davon Adsorberstufe 2 Feldblindwert Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen CS2: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung CS2: Messung 1 bis 3 - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] [mg/m³ *] [g/h] [g/h]	2,301 2,3 < 0,001 < 0,001 < 0,055 126,89 4,857 7,5 0,3 MW 130,84	0,05 2,601 2,6 < 0,001 135,06 5,168 8,7 0,4 MIN 126,89	0,05 2,601 2,6 < 0,001 130,57 4,997 4,997 8,8 0,4 MAX 135,06	MW = Mittelwert MIN = Minimalwert MAX = Maximalwert	

**) Normzustand (feucht), (273 K; 1013 hPa)

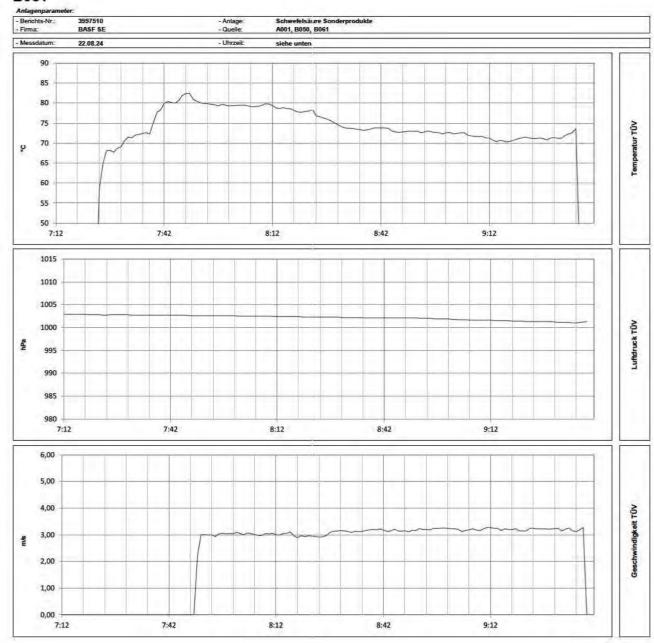
*) Normzustand (trocken), (273 K; 1013 hPa)


- Firma: BASF SE			Anlage:Quelle:	Schwefels B061	äure-Sonderp	orodukte
Messkomponente:		cos				
Probenahmeparameter Randbedingungen						
 Anzahl durchgeführter Einzelmessungen: 				3		
- Bemerkung:						
- Messung-Nr.:		1	2	3		
- Messdatum:		22.08.24	22.08.24	22.08.24	= 41	
- Uhrzeit :	von:	7:49	8:24	8:59		
	bis:	8:19	8:54	9:29		
- Luftdruck;	[hPa]	1003	1003	1003		
 Mittleres Abgasvolumen (N, tr): 	[m³/h]	60	65	67		
Standardabweichung uc:	[m³/h]	2	2	2		
				- 1		
- Abgasreinigung vorhanden ?		ja	ja	ja		
Probenahmeparameter COS:			1			-
- Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000		
- Zählerstand Gasuhr Messende:	[m³]	0,000774	0,000774	0,000774		
- Kalibrierfaktor Gasuhr	find	1,000	1,000	1,000		
- Abgesaugtes Teilgasvolumen:	[m³]	0,001	0,001	0,001		
	Pa-1	5,00	-,00	-,20		
- Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,00067	0,00067	0,00067		
- Abgesaugies Teligasvolulleri (IV, II).	fin 1	0,00007	0,00001	0,00007		
					14	
Parameter Labor COS : - Bestimmungsgrenze:	[mg/Pr.]	0,0007	0,0007	0,0007	1	F -
- Bestimmungsgrenze:	[mg/m³]	1,049	1,049	1,049		
	[mg/m]	1,010	1,040	1,010		-
Analysenergebnisse COS:						
Gesamtprobe	[mg/m³]	< 0,0007	< 0,0007	0,0007		
Feldblindwert	[ma/m³]	< 0.0007				
Feldblindwert	[mg/m³]	< 0,0007				
Blindwerte umgerechnet auf abgesaugte \	/olumina:					
		< 0,0007				
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS:	/olumina: [mg/m³]	< 1,049				
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen	/olumina: [mg/m³] [mg/m³ *]	< 1,049 < 1,049	< 1,049	1,049		
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS:	/olumina: [mg/m³]	< 1,049	< 1,049 0,0734	1,049 0,0734		
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen	/olumina: [mg/m³] [mg/m³ *]	< 1,049 < 1,049				
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom:	/olumina: [mg/m³] [mg/m³ *] [mg/m³ *] [kg/h]	< 1,049 < 1,049 0,0734 < 0,00	< 0,0734	0,0734		
Feldblindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc:	/olumina: [mg/m³] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	< 1,049 < 1,049 0,0734	0,0734	0,0734		
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS:	/olumina: [mg/m³] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	< 1,049 < 1,049 0,0734 < 0,00 0,00	0,0734 < 0,00 0,00	0,0734 0,00 0,00		
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messung 1 bis 3	[mg/m³] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	< 1,049 < 1,049	< 0,0734	0,0734 0,00 0,00 MAX	Bemerkunger	
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS:	[mg/m³] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	< 1,049 < 1,049 0,0734 < 0,00 0,00 MW 1,049	0,0734 < 0,00 0,00	0,0734 0,00 0,00 MAX 1,049	MW = Mittelwe	ert
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messung 1 bis 3	[mg/m³] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	< 1,049 < 1,049	0,0734 < 0,00 0,00	0,0734 0,00 0,00 MAX		ert
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messung 1 bis 3 - Massenkonzentrationen	[mg/m³] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	< 1,049 < 1,049 0,0734 < 0,00 0,00 MW 1,049	0,0734 < 0,00 0,00 MIN n.n.	0,0734 0,00 0,00 MAX 1,049	MW = Mittelwe	ert wert
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messung 1 bis 3 - Massenkonzentrationen	[mg/m³] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	< 1,049 < 1,049 0,0734 < 0,00 0,00 MW 1,049	0,0734 < 0,00 0,00 MIN n.n.	0,0734 0,00 0,00 MAX 1,049	MW = Mittelwe MIN = Minimal MAX = Maxim	ert wert
Blindwerte umgerechnet auf abgesaugte \ Feldblindwert Messergebnisse Einzelmessungen COS: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung COS: Messung 1 bis 3 - Massenkonzentrationen	[mg/m³] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h]	< 1,049 < 1,049 0,0734 < 0,00 0,00 MW 1,049	0,0734 < 0,00 0,00 MIN n.n.	0,0734 0,00 0,00 MAX 1,049	MW = Mittelwe MIN = Minimal MAX = Maxim n.n. = kleiner I	ert wert alwert

**) Normzustand (feucht), (273 K; 1013 hPa)


7.2 Grafische Darstellung der zeitlichen Verläufe kontinuierlich gemessener Komponenten

A001



B050

B061

7.3 Hausverfahren

Schwefelwasserstoff	
Richtlinie	VDI 3486 Blatt 2 Absorption in Cadmiumacetat-Lösung, photometrische Analyse
Messplatzaufbau	
Absorptionssystem	zwei Impingerflaschen in Reihe
Absorptionsmittel	Cadmiumacetat-Lösung
Sorptionsmittelmenge	ca. 80 ml
Probentransfer	Probentransport in PE-Fläschchen. Zeit zwischen Probenahme und Analyse < 3 Tage, lichtgeschützte Lagerung
Analyse	
Verfahren	Photometrie
Gerät	Photometer Typ UV Mini 1202
Hersteller	Shimadzu
Kalibrierung	externer Standard, Mehrpunktkalibrierung
Hinweis	Die analytische Bestimmung wird im Che- mischen Labor der TÜV SÜD Industrie Service GmbH am Standort München, Ridlerstraße durchgeführt.
Verfahrenskenngrößen	
Bestimmungsgrenze	0,005 mg/Probe
Einfluss von Begleitstoffen (Queremp- findlichkeit/Selektivität)	selektives Verfahren; gegenüber VDI 3486 Blatt 2 keine weiteren Einflüsse von Begleitstoffen
Wiederfindungsrate	99,4 %
Wiederholbarkeit s _r	6,15 %
Vergleichsstandardabweichung sa	

TÜV SÜD Industrie Service GmbH

Messstelle nach § 29b BlmSchG Westendstraße 199 80686 München Standort Mannheim

Bericht

Anlage:

über die Durchführung von Emissionsmessungen

Trilon-Fabrik II

Bau C 404

Anlage-Nr.: 14.12

Betreiber: siehe Auftraggeber

Standort: Carl-Bosch-Straße 38

67056 Ludwigshafen

Auftragsdatum: 04.04.2024

Bestellzeichen: 1086915423

Messtermin: 22.11.2024

Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI

2024

Aufgabenstellung: wiederkehrende Emissionsmessung ent-

sprechend den Vorgaben des Genehmi-

gungsbescheides

Befristete Bekanntgabe: 18.02.2026

DAKKS

Deutsche

Akkrediterungsstelle

Die Akkreditierung gilt nur für den in der Urkundenanlag aufgeführten Akkreditierungsumfang.

Datum: 24.01.2025

Unsere Zeichen: IS-US1-MAN/Br

Dieses Dokument besteht

aus 21 Seiten. Seite 1 von 21

Die auszugsweise Wiedergabe des Dokumentes und die Verwendung zu Werbezwecken bedürfen der schriftlichen Genehmigung der TÜV SÜD Industrie Service

GmbH.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände.

Amtsgericht München HRB 96 869 USt-IdNr. DE129484218 Informationen gemäß § 2 Abs. 1 DL-InfoV unter tuvsud.com/impressum

Seite 2 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

Zusammenfassung

Quelle	Messkomponente	Einheit	Maximaler Messwert minus Up	Maximaler Messwert plus Up	Emissions- begrenzung	Betriebs- zustand
A012	Feststoffe (Staub)	mg/m³ N,tr	2	3	20	
			Die angegebenen M Ier Emissionsbegre	l lesswerte sind auf d enzung bezogen.	ie Bedingungen	

Quelle	Messkomponente	Einheit	Maximaler Messwert minus Up	Maximaler Messwert plus Up	Emissions- begrenzung	Betriebs- zustand
A012	Feststoffe (Staub)	kg/h	0,02	0,02	0,20	

der Emissionsbegrenzung bezogen.

Inhaltsverzeichnis

1	Formulierung der Messaufgabe	3
2	Beschreibung der Anlage und der gehandhabten Stoffe	6
3	Beschreibung der Probenahmestelle	8
4	Mess- und Analysenverfahren, Geräte	11
5	Betriebszustand der Anlage während der Messungen	16
6	Zusammenstellung der Messergebnisse	17
7	Anhang	19

Seite 3 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

1 Formulierung der Messaufgabe

1.1 Auftraggeber

Firma: BASF SE

Anschrift: Carl-Bosch-Straße 38 67056 Ludwigshafen

Ansprechpartner:

Telefon:

1.2 Betreiber

Firma: siehe Auftraggeber
Anschrift: siehe Auftraggeber

Ansprechpartner:

Telefon:

Arbeitsstätten-Nr.:

1.3 Standort

Anschrift: siehe Auftraggeber

Gebäude: Bau C 404

Emittent: A012

1.4 Anlage

Trilon-Fabrik II

Anlage gemäß Anhang der 4. BlmSchV,

Ziffer 4.1.2 EG

Anlagen zur Herstellung von Stoffen oder Stoffgruppen durch chemische Umwandlung

in industriellem Umfang

1.5 Datum der Messung

Zeitpunkt/Zeitraum der Messung: 22.11.2024
Datum der letzten Messung: 16.01.2023
Datum der nächsten Messung: 2025

1.6 Anlass der Messung

Messungen nach § 28 BlmSchG (erstmalige und wiederkehrende Messung bei genehmigungsbedürftigen Anlagen)

1.7 Aufgabenstellung

Zur Erfüllung der Auflagen des Genehmigungsbescheides in Bezug auf die nachstehend in Kapitel 1.8 aufgeführten Komponenten, beauftragte die oben genannte Firma die gemäß § 29b Bundes-Immissionsschutzgesetz (BImSchG) benannte Messstelle "TÜV SÜD Industrie Service GmbH" mit der Durchführung entsprechender Emissionsuntersuchungen.

Auslass A 012	
Genehmigung	
Genehmigungsbehörde	Struktur- und Genehmigungsdirektion Süd, Neustadt a. d. Weinstraße
Aktenzeichen / Datum	5/51,0/03/252/Scht / 10.09.2003
Grenzwerte Massenkonzentrati	onen
Staub	20 mg/m ³
Grenzwerte Massenströme	
Staub	0,20 kg/h
Bezugsgrößen	
	en auf Normzustand (273 K, 1013 hPa), trocken

1.8 Messobjekte

Messkomponente Schadstoffe	Anzahl der Einzelmessungen
Gesamtstaub	3 à 30 min

Messkomponente Bezugsgrößen und Randparameter	Anzahl der Einzelmessungen Art der Erfassung
Abgasgeschwindigkeit	diskontinuierlich
Abgastemperatur	diskontinuierlich
Druck im Abgaskanal	diskontinuierlich
Feuchtegehalt	diskontinuierlich

1.9	Ortsbesichtigung vo	r Maccourabtubrung
1.0	Ousbesicinauma vo	i wessaarcmanaana

- ☐ Ortsbesichtigung durchgeführt am:
- keine Ortsbesichtigung durchgeführt, da mit den vorherigen Messungen an dieser Anlage schon befasst.

1.10 Messplanabstimmung

- mit dem Betreiber
- ☐ keine Messplanabstimmung durchgeführt

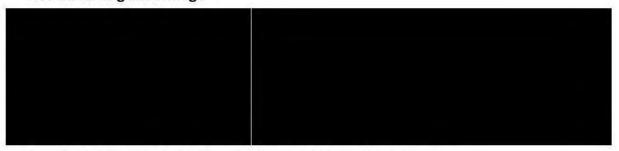
1.11 An der Messung beteiligte Personen

1.12 Beteiligung weiterer Institute

Keine

Seite 5 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

1.13 Fachlich Verantwortliche



- 2 Beschreibung der Anlage und der gehandhabten Stoffe
- 2.1 Bezeichnung der Anlage

Siehe Ziffer 1.4

2.2 Beschreibung der Anlage

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Auslass	Höhe über Grund (m)	Austrittsfläche (m²)	UTM-Koordina- ten	Bauausführung
A 012	26	0,283	32458889/ 5483615	Stahl, vertikal

- 2.4 Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe
- 2.5 Betriebszeiten nach Betreiberangaben
- 2.5.1 Gesamtbetriebszeit
- 2.5.2 Emissionszeit nach Betreiberangaben

entspricht der Gesamtbetriebszeit

- 2.6 Einrichtung zur Erfassung und Minderung der Emissionen
- 2.6.1 Einrichtung zur Erfassung der Emissionen
- 2.6.1.1 Art der Emissionserfassung

Ventilator, geschlossenes Rohrleitungssystem

2.6.1.2 Ventilatorkenndaten

Auslass	A 012
Bezeichnung	V 601
Hersteller	FIMA
Baujahr	1984
Тур	RHS 1U 400 RGX
Herstell-Nr.	43729/2
Nennleistung (m³/h)	15.700

Seite 7 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

2.6.2 Einrichtung zur Verminderung der Emissionen

Nassabscheider	F601.1 und F601.2
Hersteller	Rüskamp
Тур	Venturiwäscher
Baujahr	1984
Arbeitsprinzip	Venturiwäscher
Waschflüssigkeitsführung	tangential
Aufbau	Venturi
Art der Waschflüssigkeit / Zusätze	VE-Wasser / keine Zusätze
Waschflüssigkeitszulauf oben F6501	ca. 30,5 m³/h
untere Wäscherstufe F6503	ca. 10,1 t/h
Waschflüssigkeitszulauf Füllstand B601	ca. 1,00 m³, standgeregelt
Erneuerung der Waschflüssigkeit	kontinuierlich
Dichtemessung der Waschflüssigkeit F6503Q	Dichte 1006 kg/m³
Druckverlust PD6506	ca. 76,4 mbar
Betriebstemperatur T6501	ca. 31,1 °C
Bauart des Tropfenabscheiders	Zyklontropfenabscheider
Wartungsintervalle	nach Bedarf (regelmäßiger Rundgang zwei x pro Schicht)

2.6.3 Einrichtung zur Verdünnung des Abgases

Nicht zutreffend

3 Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Quelle	A012		
Lage	im Freien, über dem Dach, erreichbar über Gerüst		
Höhe über Grund	21 m		
Verlauf des Abgaskanals	senkrecht		
Abgasrohr-Geometrie / Durchmesser	rund / 0,6		
Hydraulischer Durchmesser	0,6 m		
Messquerschnitt	0,283 m²		
freie Einlaufstrecke	3 m		
freie Auslaufstrecke	5 m		
≥ 5 D _h Ein- und 2 D _h Auslauf (5 D _h vor Mündung)	ja		

3.1.2 Arbeitsfläche und Messbühne

Quelle	A012		
dauerhafte Messbühne	nein, Gerüst wird zu den Messungen gestellt		
Tragfähigkeit i.O.	ja		
ausreichende Arbeitsfläche und Arbeitshöhe	ja		
ausreichender Traversierraum zur Er- reichung aller Messpunkte im Mess- querschnitt	ja		
keine Einflüsse durch Umgebungsbe- dingungen auf Messergebnisse?	ja		

3.1.3 Messöffnungen

Quelle	A012
Anzahl	4
Größe	2 x 75 mm 2 x 30 mm (in 2 Ebenen übereinander)
Ausführung	Bohrungen
Lage am Kanal	90° zueinander

3.1.4 Strömungsbedingungen im Messquerschnitt

Quelle	A012
Winkel Gasstrom zu Mittelachse Abgaskanal < 15 °	ja
keine lokale negative Strömung?	ja
Verhältnis höchste/niedrigste örtliche Geschwindigkeit im Messquerschnitt < 3 : 1	ja
Mindestgeschwindigkeit in Abhängig- keit vom verwendeten Messverfahren	ja

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Quelle	A012		
Messbedingungen entsprechend DIN EN 15259 erfüllt?	ja		
ergriffene Maßnahmen	keine		
zu erwartende Auswirkungen auf das Messergebnis	keine		
Empfehlungen und Hinweise zur Ver- besserung der Messbedingungen	Es sind offene Bohrungen als Messöff- nungen vorhanden. Einbringung Stutzen mit Verschraubung, damit Schaffung ver- schließbarer Messöffnungen.		

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte / Messachse	The second secon	
Abgasgeschwindigkeit, Temperatur, Feuchte, Druck	2	2	0,09 / 0,51	
Staub	2	2	0,09 / 0,51	

Seite 10 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

3.2.2	Homogenitätsprüfung				
	☐ durchgeführt (siehe Ergebnisse in Kap. 6)				
	☐ Fläche Messquerschnitt < 0,1 m²				
	■ Netzmessung				
	☐ liegt vor				
	Datum der Homogenitätsprüfung:				
	Berichts-Nr.:				
	Prüfinstitut:				
	Ergebnisse der Homogenitätsprüfung:				
	☐ Messung an einem beliebigen Punkt				
	☐ Messung an einem repräsentativen Punkt				
	Achse:				
	Eintauchtiefe:				
	□ Netzmessung				
3.2.3	Komponentenspezifische Darstellung				
	Nicht zutreffend				

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Messpunkte Lage im Netz gemäß DIN EN 15259

Messfühler S-Pitot-Staurohr

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

Messbereich 0 bis 1250 Pa

Bestimmungsgrenze 5 Pa kontinuierliche Ermittlung nein

4.1.2 Statischer Druck im Abgaskamin

Richtlinie DIN EN 16911-1

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druck-

messmodul FDA

Hersteller Ahlborn, Holzkirchen
Messbereich -1.250 Pa bis 1.250 Pa

4.1.3 Luftdruck in Höhe der Messstelle

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

4.1.4 Abgastemperatur

Richtlinie VDI/VDE 3511 Blatt 2

Messeinrichtung Digitalanzeigeinstrument Typ Almemo 2690 mit

T-Modul FT FZA 9020-FS (NiCr-Ni)

Hersteller Ahlborn, Holzkirchen

Messfühler Thermoelement NiCr-Ni (Typ K)

Messbereich -200 bis +1370°C

kontinuierliche Ermittlung nein

Seite 12 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Berechnet aus der Sättigungsfeuchte des Abgases nach Wäscher.

4.1.6 Abgasdichte

berechnet unter Berücksichtigung der Abgaszusammensetzung, des Luftdrucks, der Abgastemperatur und der Druckverhältnisse im Kanal

4.1.7 Abgasverdünnung

entfällt

4.1.8 Volumenstrom

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Mittlere Abgasgeschwindigkeit

Messverfahren siehe 4.1.1 Messeinrichtung siehe 4.1.1

Querschnittsfläche

Messverfahren Messung mit Messstab

Messeinrichtung Messstab

Seite 13 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

- 4.2 Automatische Messverfahren nicht Bestandteil der Prüfung
- 4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen nicht Bestandteil der Prüfung

4.4 Messverfahren für partikelförmige Emissionen

4.4.1 Messobjekt Gesamtstaub

4411 Messverfahren

> Richtlinie DIN EN 13284-1 bzw. VDI 2066 Blatt 1

> > Gravimetrie der auf Planfiltern abgeschiedenen

Staubmasse

4.4.1.2 Probenahme und Probenaufbereitung

> Filtergerät Plan-Filterkopfgerät

Anordnung außenliegend, elektrisch beheizt auf 160°C Entnahmesonde unmittelbar auf dem Krümmer angeschraubt, be-

heizt durch das Abgas

ja / Schwanenhals

Filtrationstemperatur 160°C

Krümmer zwischen Entnahmesonde

und Filtergehäuse

Material Sonde / Filterhalter Titan / Titan

Filter Munktell MK 360 Quartz Microfibre Stora Filter Products, Schweden

> Abscheidegrad > 99,9% Porendurchmesser 0,2 µm

Durchmesser 50 mm

Material: Titan 1,0 m, elektrisch beheizt auf Absaugrohr

160°C

Absorptionssystem

für filtergängige Stoffe

Absorptionsmittel entfällt Sorptionsmittelmenge entfällt

Pumpe: Rietschle TLV 6; Gasuhr Itron G4 RF1 Absaugeeinrichtung

4.4.1.3 Behandlung der Filter und der Ablagerungen

> vor Beaufschlagung: 180°C > 1 h Trocknung der Filter

> > Abkühlung im Exsiccator über Silicagel nach Beaufschlagung: 160°C, > 1 h Abkühlung im Exsiccator über Silicagel

entfällt, da nur Gesamtstaub bestimmt wird

Rückgewinnung von Ablagerungen

vor Filter

Spülung von Düse, Schwanenhals und Absaugrohr, Abdampfrückstand wird auf Filtergewicht

aufaddiert

Spülung der Verbindungen

zwischen Filter und Absorber

entfällt

entfällt

Gesamtleerproben Wägung Wägung der Filter

Waage Analysenwaage Sartorius ME 235-P - OCE

4.4.1.4 Aufbereitung und Auswertung der Messfilter und Absorptionslösungen

> Messfilter entfällt Absorptionslösungen entfällt

Seite 15 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

- 4.5 Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u. ä.) nicht Bestandteil der Prüfung
- 4.6 Geruchsemissionen nicht Bestandteil der Prüfung


Seite 16 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

5 Betriebszustand der Anlage während der Messungen

5.1 Produktionsanlage

Die Daten zur Beschreibung des Betriebszustandes wurden vom Betreiber zur Verfügung gestellt und auf Plausibilität geprüft. Während der Messung wurden diese Daten stichprobenartig kontrolliert.

5.2 Abgasreinigungsanlagen

Siehe 2.6.2.1

6 Zusammenstellung der Messergebnisse

6.1 Bewertung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwert
A012	Feststoffe (Staub)	mg/m³ N,tr	3 à 30 min	1,6	n.n.	2,4
n.n. = kleiner E	Bestimmungsgrenze		Die angegebenen der Emissionsbeg			gen

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalweri
A012	Feststoffe (Staub)	[kg/h]	3 à 30 min	0,013	n.n.	0,019

Alle Einzelergebnisse der gemessenen Stoffkomponenten und die für die Ermittlung erforderlichen Bezugsgrößen sind in Tabellenform mit der jeweiligen Messzeit im Anhang Mess- und Rechenwerte aufgeführt.

6.3 Messunsicherheiten

Quelle	Messkomponente	Einheit	y _{max}	Up	y _{max} - Up	y _{max} + Up	Bestimmungsmethode			
A012	Feststoffe (Staub)	mg/rn³ N,tr	2,4	0,4 p = 0,95	2	3	x Doppelbestimmung			
	y _{max} = Maximaler Messwert									

Quelle	Messkomponente	Einheit	y _{max}	Up	y _{max} - Up	y _{max} + Up	Bestimmungsmethode			
A012	Feststoffe (Staub)	kg/h	0,020	0,002 p = 0,95	0,02	0,02	x Doppelbestimmung Indirekter Ansatz			
	y _{max} = Maximaler Messwert Up = Erweiterte Messunsicherhe									

6.4 Diskussion der Ergebnisse

Die ermittelten Messergebnisse weisen im Hinblick auf

- die Betriebsbedingungen (Einsatzstoffe im Messzeitraum, Temperaturen etc.),
- die Betriebsweise,
- die Abgasreinigung,
- den Produktionsablauf,
- die Art und Funktion der Abluftbehandlung und
- die messtechnischen Abläufe

keine Unplausibilitäten auf.

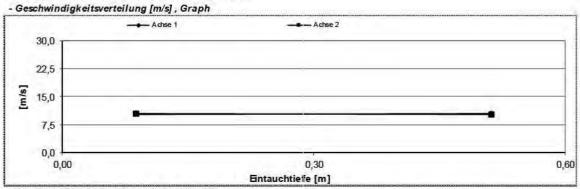
Die Plausibilitätsprüfung erfolgte unter Berücksichtigung folgender Sachverhalte:

 Vorwissen von vergleichbaren Anlagen Vergleich von Messergebnissen miteinander

Prüflaboratorium Emissionsmessungen/Kalibrierungen

Messstelle nach § 29b BlmSchG - DAkkS Akkreditierung nach DIN EN ISO/IEC 17025

Fachlich Verantwortlicher	Projektleiter



7 Anhang

7.1 Mess- und Rechenwerte

Anhang Mess- und	Rechenwe	erte									
- Bericht-Nr.						- Anlage	Trilon	Fabrik II			
- Firma	BASF					- Quelle	A012				
- Probenahmepara	meter vor	Ort									
- Messdatum	22.11.20	7.5				- Uhrzeit	von	11:45	bis	12:05	Uhr
- Bemerkung	Gasuhr	11780					- 74.6				
- Beschreibung Me	ssquerso	hnitt									
Durchmesser		[m]	0,600	u _c =	0,012	gerade Enlaufstred gerade Auslaufstre		[m] [m]	3,00 5,00		
Fläche Messebene A		[m²]	0,2827	u _e =	0,007	Messöffnungen		2			
Hydraulischer Ø (HD)		[m]	0,600			Innenw and		glattw an	dig		with the same
- Anforderung DIN	15259 (6.2)	/ DIN 132	284-1			- Empfehlung DIN	15259				
Abgasströmung Wink	el zur Haup	otachse <	15°		ja	gerade Enlaufstred	ke (3 m)	>= 5 x HD (3 m) ?		ja
keine lokale negative	Strömung?	}			ja	gerade Auslaufstre	ecke (5 m) >= 2 x HD	(1,2 m)?		ja
υ MAX / υ MIN mit 1:1 ist < 3:1?					ja						
					ja						
Wandabstand MP 1/0	> 5 cm bzv	v. > 3 % 1	ı.Ø?		ja						
- Mittlere Abgaspa	ALTERNATION AND ADDRESS OF THE PARTY OF THE					- Mittlerer Volum	enstron				
Abgastemperatur	Tc	[°C]	41,9	u _c =	0,2	Betriebszustand		[m³/h]	10.574	u _c =	271
						Norm (feucht)		[m³/h]	9.001	$u_c =$	255
Feuchte	*)	[kg/m³]	0,072	$u_c =$	0,004	Norm (trocken)		[m³/h]	8.260	u _c =	233
Feuchte	ф H2O	[Vol%]	8,2	u _e =	0,4	Up Norm (trocken)		[m³/h]	466	5,6 %	K=2
Dichte	p *)	[kg/m³]	1,293							200000000	
Dichte	p Betriet	[kg/m³]	1,062	u _c =	0,006						
Luftdruck	Patm	[Pa]	99.330	u _c =	173						
Statischer Druck	Pstat	[Pa]	130	u _c =	0,9						
Absolutdruck	Pc	[Pa]	99.460	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	57,9	u _c =	1,3						
Geschw indigkeit	υ	[m/s]	10,44	uc =	0,12	- Korrektur mittle	ere Ges	chw indigk	eit (Wand	effekte)
Sauerstoff		[Vol.%]	21,0	u _c =	0,6	Ausgleichsfaktor fü	ir Wandfl	lächen			
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig mittlere Geschwind	0,995 liakeit n (l	(orrigiert)		10,39	m/s
Rest als Stickstoff		[Vol.%]	79,0			Entsprechend sind			röme korrig		1113

*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

Geschwindigkeitsverteilu Messpunkt	1	2		1 1			ī	T .	Crest	T
Entauchtiefe [m]	0,09	0,51		1 1	- 1	***************************************			Faktor	Schiefe
Achse 1	10,34	10,53		***************************************	***************************************	******************			1,01	1,02
Achse 2	10,57	10,33							1,01	1,02
- Constitution of the Cons										
-										
restfaktor Gesamt Profil =		< 1.3.?	ia	- Schi	efe Gesamt	Profil =	0/10/00/00/00/00/00	< 1.2	2.7 ia	Lumman

Seite 20 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

*) Normzustand (trocken), (273 K; 1013 hPa)

Anhang: Mess- und Rechenwerte - Berichts-Nr.: 3997507 - Anlage: Trilon-Fabrik II A012 Firma: BASF - Quelle: Feststoffe (Staub) **Out-Stack Planfilter** Messkomponente: Probenahmeparameter Randbedingungen: - Anzahl durchgeführter Einzelmessungen: - Bemerkung: Messung-Nr. 3 22.11.24 22.11.24 22.11.24 Messdatum: Uhrzeit: von: 12:10 12:44 13:22 12:40 13:18 13:52 bis: Luftdruck: [hPa] 993 993 993 8 260 Mittleres Abgasvolumen (N, tr): [m3/h] 8 260 8 260 233 233 Standardabweichung uc [m3/h] 233 Abgasreinigung vorhanden ? ja ja ja Probenahmeparameter Feststoffe (Staub): - Zählerstand Gasuhr Messbeginn: [m³] 388,963 389,769 390,639 Zählerstand Gasuhr Messende: 389,769 390,639 391,430 $[m^3]$ - Kalibrierfaktor Gasuhr 0,996 0,996 0,996 Abgesaugtes Teilgasvolumen: 0.803 0,788 0,867 $[m^3]$ Mittlerer Unterdruck Gasuhr. [hPa] 40 40 45 Mittlere Temperatur Gasuhr. [°C] 5 5 5 0,743 0,801 Abgesaugtes Teilgasvolumen (N, tr): [m³] * 0,724 Durchmesser Düse: [mm] 8 8 8 Isokinetischer Faktor: 1,01 0,96 0,99 Parameter Labor Feststoffe (Staub): Die Auswaage Sonde wurde Massenanteilig auf die Einzelmessungen verteilt - Bestimmungsgrenze: [mg/Pr.] 0,3 0,3 0,3 Bestimmungsgrenze: [mg/m3 *] 0.40 0.37 0.41 Analysenergebnisse Feststoffe (Staub) : Gesamtauswaage 0.3 2.0 [mg/Pr.] 1.5 davon Auswaage Filter [mg/Pr.] 0,3 1,64 1,51 davon Auswaage Sonde [mg/Pr.] 0.7 Anteil Auswaage Sonde je Einzelmesssung [mg/Pr] 0,3 0,3 0,3 [mg/Pr.] Feldblindwert 0,3 Blindwerte umgerechnet auf abgesaugte Volumina: [mg/m³ *] Feldblindwert 0,40 Messergebnisse Einzelmessungen Feststoffe (Staub): Massenkonzentrationen [mg/m3 *] 0,4 2,4 2,0 Standardabweichung uc [mg/m³ *] 0,11 0,18 0,17 - Massenstrom: [kg/h] 0,003 0,019 0,016 0,000 0,001 0,001 Standardabweichung uc: [kg/h] Messergebnisse Zusammenfassung Feststoffe (Staub): Messung 1 bis 3 MW MIN MAX Bemerkungen MW = Mittelwert 2,4 Massenkonzentrationen [mg/m3 *] 1,6 n.n. Standardabweichung uc: [mg/m3 *] 0,15 0,11 0,18 MIN = Minimalwert MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze Die Mittelwertberechnung erfolgt mit 0.013 0.019 Massenstrom [kg/h] n.n. ganzer Bestimmungsgrenze Standardabweichung uc [kg/h] 0,001 0,000 0,001

**) Normzustand (feucht), (273 K; 1013 hPa)

Seite 21 von 21 Zeichen/Erstelldatum: IS-US1-MAN/Br / 24.01.2025 Berichtsnummer: 3997507 BASF Trilon-Fabrik II EMI 2024 3997507 BASF Trilon-Fabrik II EMI 2024.docx

7.2 Grafische Darstellung der zeitlichen Verläufe kontinuierlich gemessener Komponenten

Nicht zutreffend.

7.3 Hausverfahren

nicht relevant

TÜV SÜD Industrie Service GmbH

Messstelle nach § 29b BlmSchG Westendstraße 199 80686 München Standort Mannheim

Bericht

Anlage:

über die Durchführung von Emissionsmessungen

Trilon-Fabrik I Bau C 404

Anlage-Nr.: 14.04

Betreiber: siehe Auftraggeber

Standort: Carl-Bosch-Straße 38

67056 Ludwigshafen

Auftragsdatum: 04.04.2024

Bestellzeichen: 1086815423

Messtermin: 18.06.2024

Berichtsnummer: 3997506_BASF_Tri-

Ion1_EMI_2024_rev01

Aufgabenstellung: wiederkehrende Emissionsmessung ent-

sprechend den Vorgaben des Genehmi-

gungsbescheides

Befristete Bekanntgabe: 18.02.2026

Revision 01 ersetzt den Bericht 3997506 BASF Trilon1 EMI 2024.

DAKKS

Deutsche
Akkreditierungsstelle
DiPL:14153-03-00

für den in der Urkundenanlage aufgeführten Akkreditierungsumfang.

Datum: 26.09.2024

Unsere Zeichen: IS-US1-MAN/Na

Dieses Dokument besteht aus 26 Seiten.

Seite 1 von 26

Die auszugsweise Wiedergabe des Dokumentes und die Verwendung zu Werbezwecken bedürfen der schriftlichen Genehmigung der TÜV SÜD Industrie Service

GmbH.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände.

Seite 2 von 26 Zeichen/Erstelldaturn: IS-US1-MAN/Na / 26.09.2024 Berichtsnummer: 3997506_BASF_Trilon1_EMI_2024

Zusammenfassung

0		
9	20	
4	30	
8	350	
		350

der Emissionsbegrenzung bezogen.

Inhaltsverzeichnis

1	Formulierung der Messaufgabe	3
2	Beschreibung der Anlage und der gehanclhabten Stoffe	6
3	Beschreibung der Probenahmestelle	8
4	Mess- und Analysenverfahren, Geräte	11
5	Betriebszustand der Anlage während der Messungen	17
6	Zusammenstellung der Messergebnisse	18
7	Anhang	21

1 Formulierung der Messaufgabe

1.1 Auftraggeber

Firma: BASF SE

Anschrift: Carl-Bosch-Straße 38 67056 Ludwigshafen

Ansprechpartner:

Telefon:

1.2 Betreiber

Firma: siehe Auftraggeber Anschrift: siehe Auftraggeber

Ansprechpartner:

Telefon:

Arbeitsstätten-Nr.:

1.3 Standort

Anschrift: siehe Auftraggeber

Gebäude: Bau C 404 Emittent: A008

1.4 Anlage

Trilon-Fabrik

Anlage gemäß Anhang der 4. BlmSchV,

Ziffer 4.1.2 EG

Anlagen zur Herstellung von Stoffen oder Stoffgruppen durch chemische Umwandlung

in industriellem Umfang

1.5 Datum der Messung

Zeitpunkt/Zeitraum der Messung: 18.06.2024

Datum der letzten Messung: 09.01.2024 (Staub) / 18.11.2021 (alle Mess-

komponenten)

Datum der nächsten Messung: 2025 (Staub) / 2027 (alle Messkomponen-

ten)

1.6 Anlass der Messung

Messungen nach § 28 BlmSchG (erstmalige und wiederkehrende Messung bei genehmigungsbedürftigen Anlagen)

1.7 Aufgabenstellung

Zur Erfüllung der Auflagen des Genehmigungsbescheides in Bezug auf die nachstehend in Kapitel 1.8 aufgeführten Komponenten, beauftragte die oben genannte Firma die gemäß § 29b Bundes-Immissionsschutzgesetz (BImSchG) benannte Messstelle "TÜV SÜD Industrie Service GmbH" mit der Durchführung entsprechender Emissionsuntersuchungen.

Bescheid/Auflagen	
Ausstellende Behörde	Stadtverwaltung Ludwigshafen
Aktenzeichen	4-151H.Gf-1180-08
Ausstelldatum	05.09.2008
Genehmigungsbehörde	Struktur- und Genehmigungsdirektion Süd. Neustadt a. d. Weinstraße
Aktenzeichen	5/51,0/03/149 Scht
Ausstellungsdatum	27.06.2003

Es sind folgende Grenzwerte festglelegt:

Schadstoff	Grenzwert
Staub	20 mg/m3
Stickstoffoxide, angegeben als Stickstoffdioxid (NO ₂)	350 mg/m3
Ammoniak	30 mg/m3

Die Emissionsgrenzwerte sind als Masse der emittierten Stoffe, bezogen auf das Volumen des Abgases im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchtegehaltes an Wasserdampf zu verstehen. Die Emissionsgrenzwerte haben keinen Sauerstoffbezugswert.

1.8 Messobjekte

Messkomponente Schadstoffe	Anzahl der Einzelmessungen Art der Erfassung
Gesamtstaub	3 à 30 min, diskontinuierlich
Stickstoffoxide, angegeben alsStick- stoffdioxid (NO ₂)	3 à 30 min, kontinuierlich
Ammoniak	3 à 30 min, diskontinuierlich

Messkomponente Bezugsgrößen und Randparameter	Anzahl der Einzelmessungen Art der Erfassung
Abgasgeschwindigkeit	diskontinuierlich
Abgastemperatur	diskontinuierlich
Druck im Abgaskanal	diskontinuierlich
Feuchtegehalt	diskontinuierlich

Seite 5 von 26 Zeichen/Erstelldatum: IS-US1-MAN/Na / 26.09.2024 Berichtsnummer: 3997506_BASF_Trilon1_EMI_2024

1.9	Ortsbesichtigung vor Messdurchführung	
	☐ Ortsbesichtigung durchgeführlt am:	
	keine Ortsbesichtigung durchgeführt, da mit den vorherigen Messungen an dieser Anlage schon befasst.	
1.10	Messplanabstimmung	
	□ keine Messplanabstimmung durchgeführt	
1.11	An der Messung beteiligte Personen	
1.12	Beteiligung weiterer Institute	
	Keine	
1.13	Fachlich Verantwortliche	

- 2 Beschreibung der Anlage und der gehandhabten Stoffe
- 2.1 Bezeichnung der Anlage

Siehe Ziffer 1.4

2.2 Beschreibung der Anlage

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Auslass	Höhe über Grund (m)		Rechts- wert/Hochwert	Bauausführung
A 008	25	0,636	32 458901 / 5483604	Stahl

- 2.4 Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe
- 2.5 Betriebszeiten nach Betreiberangaben
- 2.5.1 Gesamtbetriebszeit
- 2.5.2 Emissionszeit nach Betreiberangaben

entspricht der Gesamtbetriebszeit

- 2.6 Einrichtung zur Erfassung und Minderung der Emissionen
- 2.6.1 Einrichtung zur Erfassung der Emissionen
- 2.6.1.1 Art der Emissionserfassung

Ventilator, geschlossenes Rohrleitungssystem

2.6.1.2 Ventilatorkenndaten

Auslass	A 008	
Bezeichnung	V 26	
Hersteller	FIMA	
Baujahr	keine Angaben	
Тур	RM 4U 800 R6	
Herstell-Nr.	keine Angaben	
Nennleistung (m³/h)	44.000	

2.6.2 Einrichtung zur Verminderung der Emissionen

Hersteller	LTB GmbH & Co. KG
Тур	Rotationswäscher
Baujahr	2008
Arbeitsprinzip	Rotationswäscher
Art der Waschflüssigkeit / Zusätze	VE-Wasser / keine Zusätze
Waschflüssigkeitsumlauf	ca. 63 m ³ /h
Waschflüssigkeitszulauf	ca. 1,0 m ³ /h
Erneuerung der Waschflüssigkeit	kontinuierlich
pH-Wert	10-12
Druckverlust	keine Messung
Betriebstemperatur	ca. 50 °C
Bauart des Tropfenabscheiders	die Tropfenabscheidung erfolgt über ein als Tauchrohr mit Tropfkante ausgeführ- tes Abluftrohr
Wartungsintervalle	nach Bedarf (regelmäßiger Rundgang, 2 x pro Schicht)

2.6.3 Einrichtung zur Verdünnung des Abgases

Nicht zutreffend.

3 Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Quelle	A008
Lage	im Freien, über dem Dach, erreichbar über Gerüst
Höhe über Grund	23,75 m
Verlauf des Abgaskanals	senkrecht
Abgasrohr-Geometrie / Durchmesser	rund / 0,9
Hydraulischer Durchmesser	0,9 m
Messquerschnitt	0,636 m²
freie Einlaufstrecke	2,15 m
freie Auslaufstrecke	2,25 m
≥ 5 D _h Ein- und 2 D _h Auslauf (5 D _h vor Mündung)	nein

3.1.2 Arbeitsfläche und Messbühne

Quelle	A008
dauerhafte Messbühne	nein, Gerüst wird zu den Messungen gestellt
Tragfähigkeit i.O.	ja
ausreichende Arbeitsfläche und Arbeitshöhe	ja
ausreichender Traversierraum zur Er- reichung aller Messpunkte im Mess- querschnitt	ja*)
keine Einflüsse durch Umgebungsbe- dingungen auf Messergebnisse?	ja

^{*)} Für die Bestimmung des Volumenstroms konnten auf beiden Messachsen alle Messpunkte erreicht werden. Für die Staubmessung reichte der Traversierraum auf der Messachse 2 nicht aus. Somit konnte nur eine Linienmessung mit Messnetzverdichtung für die Komponente Staub durchgeführt werden.

3.1.3 Messöffnungen

Quelle	A008	
Anzahl	2	
Größe	1 x 40 mm-Bohrung 1 x 50 mm-Bohrung	
Ausführung	Bohrung	
Lage am Kanal	90° zueinander	

3.1.4 Strömungsbedingungen im Messquerschnitt

Quelle	A008
Winkel Gasstrom zu Mittelachse Abgaskanal < 15 °	ja
keine lokale negative Strömung?	ja
Verhältnis höchste/niedrigste örtliche Geschwindigkeit im Messquerschnitt < 3: 1	ja
Mindestgeschwindigkeit in Abhängig- keit vom verwendeten Messverfahren	ja

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Quelle	A008
Messbedingungen entsprechend DIN EN 15259 erfüllt?	ja*)
ergriffene Maßnahmen	Für die Messkomponente Staub wurde auf Grund einer zu geringen Einlaufstre- cke eine Messnetzverdichtung durchge- führt.
zu erwartende Auswirkungen auf das Messergebnis	keine
Empfehlungen und Hinweise zur Verbesserung der Messbedingungen	keine

^{*)} Die Probenahmestelle erfüllt nicht die Empfehlungen der Richtlinie DIN EN 15259 bezüglich der freien Ein- und Auslaufstrecke. Die Anforderungen an die Geschwindigkeits- und Strömungsverhältnisse werden erfüllt.

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

Messkomponente	Frank Company of the second company of the s	Anzahl der Messpunkte / Messachse	
Abgasgeschwindigkeit, Temperatur, Druck	2	3	0,08/0,45/ 0,82
Staub, Ammoniak, Stickoxide, Feuchte	1	3	0,08/0,45/ 0,82

3.2.2	Homogenitätsprüfung								
	☐ durchgeführt (siehe Ergebnisse in Kap. 6)								
	□ nicht durchgeführt, weil:								
	☐ Fläche Messquerschnitt < 0,1 m²								
	Netzmessung Abgasgeschwindigkeit, Temperatur und Druck / Linienmes- sung: Gesamtstaub, Ammoniak, Stickoxide und Feuchte								
	□ liegt vor								
	Datum der Homogenitätsprüfung:								
	Berichts-Nr.:								
	Prüfinstitut:								
	Ergebnisse der Homogenitätsprüfung:								
	☐ Messung an einem beliebigen Punkt								
	☐ Messung an einem repräsentativen Punkt Achse:								
	Eintauchtiefe:								
	□ Netzmessung								
3.2.3	Komponentenspezifische Darstellung								

Nicht zutreffend

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Messpunkte Lage im Netz gemäß DIN EN 15259

Messfühler Pitot-Staurohr

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

Messbereich 0 bis 1250 Pa

Bestimmungsgrenze 5 Pa kontinuierliche Ermittlung nein

4.1.2 Statischer Druck im Abgaskamin

Richtlinie DIN EN 16911-1

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druck-

messmodul FDA

Hersteller Ahlborn, Holzkirchen Messbereich -1250 bis 1250 Pa

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

4.1.4 Abgastemperatur

Richtlinie VDI/VDE 3511 Blatt 2

Messeinrichtung Digitalanzeigeinstrument Typ Almemo 2690 mit

T-Modul FT FZA 9020-FS (NiCr-Ni)

Hersteller Ahlborn, Holzkirchen

Messfühler Thermoelement NiCr-Ni (Typ K)

Messbereich -200 bis +1370°C

kontinuierliche Ermittlung nein

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Richtlinie DIN EN 14790

Ermittlungsmethode Kondensation als Wasser und Adsorption auf

Silikagel

Messeinrichtung Waage, Typ TE 412

Entnahmesonde Edelstahl, Länge 1,0 m, elektrisch beheizt auf

160°C

Partikelfilter Planfilter Munktell MK 360 im Filtergehäuse,

außenliegend, elektrisch beheizt

Gasprobenehmer GS 212

Analyseverfahren Gravimetrie

Messgerät Waage, Typ TE 412

Hersteller Sartorius
Messbereich 4-40 Vol.-%

4.1.6 Abgasdichte

Bestimmung berechnet unter Berücksichtigung der Abgas-

zusammensetzung, des Luftdrucks, der Abgastemperatur und der Druckverhältnisse im Kanal

4.1.7 Abgasverdünnung

entfällt

4.1.8 Volumenstrom

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Mittlere Abgasgeschwindigkeit

Messverfahren siehe 4.1.1 Messeinrichtung siehe 4.1.1

Querschnittsfläche

Messverfahren Messung mit Messstab

Messeinrichtung Messstab

4.2 Automatische Messverfahren

4.2.1 Messkomponente Sauerstoff, Stickstoffoxide, Kohlendioxid

4.2.1.1 Messverfahren

O₂ Paramagnetische Gasanalyse

nach DIN EN 14789

NO_X Chemilumineszenz mit NO₂-Konverter (CLD)

nach DIN EN 14792

CO₂ Nicht-Dispersive-Infrarot-Gasanalyse (NDIR)

4.2.1.2 Analysator

Hersteller Horiba Europe
Typ Horiba PG 350 E

4.2.1.3 Eingestellter Messbereich

O₂ 0 - 25 Vol.-%

NO_X 0 - 100 ppm (1 ppm entspr. 2,053 mg/m³ NO₂)

CO₂ 0 - 20 Vol.-% 4 - 20 mA

4.2.1.4 Gerätetyp eignungsgeprüft

BAnz AT 05.03.2013 B10

4.2.1.5 Probenahme und Probenaufbereitung

Entnahmesonde Edelstahl, Länge 1,0 m, elektrisch beheizt auf

160°C

Probegasleitung

vor Gasaufbereitung Länge 15,0 m, Material: PTFE, beheizt auf

160°C

nach Gasaufbereitung Länge 5,0 m, Material: PTFE, unbeheizt

Messgasaufbereitung

Messgaskühler Cooler ECM

Hersteller M & C Products Analysentechnik GmbH

Regeltemperatur 4°C Konverter integriert

4.2.1.6 Überprüfen von Null- und Referenzpunkt mit Prüfgasen

Nullgas Stickstoff (5.0)

Prüfgase

Mischgas O₂ / CO₂ 19,9 Vol.-% O₂ / 16,0 Vol.-% CO₂, Rest N₂

Hersteller Linde Zertifikat gültig bis 05.03.2027

NO_X 82,4 ppm, Rest N₂

Hersteller Linde
Zertifikat gültig bis 02.04.2027

4.2.1.7 Einstellzeit des gesamten Messaufbaus

Einstellzeit 30 Sekunden

4.2.1.8 Messwerterfassungssystem

Messwertregistrierung

und -auswertung

Fabrikat/Typ Datenerfassungssystem "Trendows",

Trendbus-Module EA8-V/A

durch elektronische Datenerfassung

Hersteller E. Kirsten

Auswertung Tabellenkalkulationsprogramm

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

4.3.1 Messkomponente Ammoniak und gasförmige anorganische Ammoniumverbindungen

4.3.1.1 Messverfahren

Richtlinie NH₃: VDI 3878

Absorption in verdünnter Schwefelsäure mit in-

onenchromatografischer Analyse

4.3.1.2 Probenahme und Probenaufbereitung

Entnahmesonde Edelstahl, Länge 1,0 m, elektrisch beheizt auf

160°C

Partikelfilter Outstack Planfilter nach VDI 2066, elektrisch

beheizt

Absorptionssystem zwei Frittenwaschflaschen in Reihe

Waschflasche 1 und 2 werden separat analy-

siert

ca. 80 ml

Absorptionsmittel 0,1 n H₂SO₄-Lösung

Sorptionsmittelmenge Absaugeinrichtung

Abstand Sonde - Absorptionssystem

Zeitraum zwischen Probenahme

und Analyse

Desaga GS 212 Sondenlänge + ca. 0,1 m

gekühlter Probentransport in PE-Fläschchen.

schnellstmögliche Analyse

4.3.1.3 Analytische Bestimmung

Verfahren Ionenchromatografie

Probenvorbereitung außer ggf. Verdünnung nicht erforderlich

Gerät ICS 1100 Ion Chromatograph

Hersteller Dionex GmbH, Idstein

Trennsäule IC-Säule lonpac CG 16 / CS 16; 5 x 250 mm

Detektor Leitfähigkeitsdetektor

Kalibrierung
Hinweis
externer Standard, Mehrpunktkalibrierung
Die analytische Bestimmung wird im Chemi-

schen Labor der TÜV SÜD Industrie Service GmbH am Standort München, Ridlerstraße

durchgeführt.

4.4 Messverfahren für partikelförmige Emissionen

4.4.1 Messkomponente Gesamtstaub

4.4.1.1 Messverfahren

Richtlinie DIN EN 13284-1 bzw. VDI 2066 Blatt 1

Gravimetrie der auf Planfiltern abgeschiedenen

Staubmasse

4.4.1.2 Probenahme und Probenaufbereitung

Filtergerät Plan-Filterkopfgerät,

elektrisch beheizt auf ca. 160°C

Anordnung außenliegend am Abgaskanal

Entnahmesonde Unmittelbar auf dem Krümmer angeschraubt

Beheizung durch das Messgas Wirkdurchmesser siehe Anhang

Filtrationstemperatur 160 °C

Krümmer zwischen Entnahmesonde ja

und Filtergehäuse

Material Sonde / Filterhalter Edelstahl

Filter Munktell MK 360 Quartz Microfibre

Stora Filter Products, Schweden

Abscheidegrad > 99,9% Porendurchmesser 0,2µm Durchmesser 50 mm

Absaugrohr Material: Edelstahl

Länge 1,0 m

elektrisch beheizt auf ca. 160°C entfällt, da nur Gesamtstaub bestimmt wird

Absorptionssystem für filtergängige Stoffe

Absorptionsmittel entfällt Sorptionsmittelmenge entfällt

Absaugeeinrichtung Flügelzellenpumpe mit Gasuhr und Absaugre-

gelung

4.4.1.3 Behandlung der Filter und der Ablagerungen

Trocknung der Filter vor Beaufschlagung: 180°C, > 1 h

Abkühlung im Exsiccator über Silicagel nach Beaufschlagung: 160°C, > 1 h Abkühlung im Exsiccator über Silicagel

Abkanang ini Exsecutor aber Sincage

Rückgewinnung von Ablagerungen

vor Filter

Spülung der Sonde, Schwanenhals und Düse, Abdampfrückstand wurde auf Filtergewicht auf-

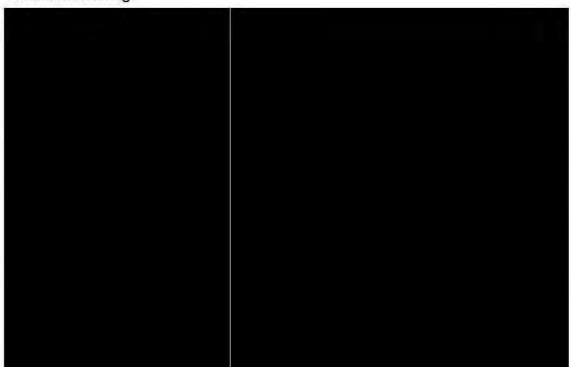
addiert

Wägung der Filter

Waage Sartorius ME 235-P - OCE

4.4.1.4 Aufbereitung und Analyse der Filter und der Absorptionslösungen

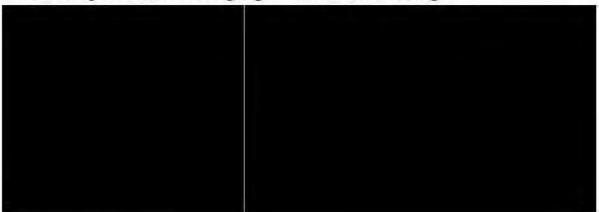
Messfilter entfällt Absorptionslösungen entfällt Seite 16 von 26 Zeichen/Erstelldatum: IS-US1-MAN/Na / 26.09.2024 Berichtsnummer: 3997506_BASF_Trilon1_EMI_2024


- 4.5 Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u. ä.) nicht Bestandteil der Prüfung
- 4.6 Geruchsemissionen nicht Bestandteil der Prüfung

5 Betriebszustand der Anlage während der Messungen

Die Daten zur Beschreibung des Eletriebszustandes wurden vom Betreiber zur Verfügung gestellt und auf Plausibilität geprüft. Während der Messung wurden diese Daten stichprobenartig kontrolliert.

5.1 Produktionsanlage


5.2 Abgasreinigungsanlagen

Siehe 2.6.2.1

6 Zusammenstellung der Messergebnisse

6.1 Bewertung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Massenkonzentrationen:

Quelle	Messkomponente	Elinheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwert
A008	Feststoffe (Staub)	mg/m³ N,tr	3 à 30 min	8,0	7,7	8,5
A008	NH3	mg/m³ N,tr	3 à 30 min	2,5	2,4	2,6
A008	NOx als NO2	mg/m³ N,tr	3 à 30 min	4,1	4,1	4,2
1,000	TO SIGNOL	11 165 2 20	Die angegebenen der Emissionsbeg	Messwerte sind	auf die Bedingun	AC.

Massenströme:

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwert
A008	Feststoffe (Staub)	[kg/h]	3 à 30 min	0,213	0,206	0,227
A008	NH3	[kg/h]	3 à 30 min	0,066	0,064	0,069
A008	NOx als NO2	[kg/h]	3 à 30 min	0,110	0,109	0,112

Alle Einzelergebnisse der gemessenen Stoffkomponenten und die für die Ermittlung erforderlichen Bezugsgrößen sind in Tabellenform mit der jeweiligen Messzeit im Anhang Mess- und Rechenwerte aufgeführt.

Seite 19 von 26 Zeichen/Erstelldatum: IS-US1-MAN/Na / 26.09.2024 Berichtsnummer: 3997506_BASF_Trilon1_EMI_2024

6.3 Messunsicherheiten

Quelle	Messkomponente	Einheit	Y _{max}	Up	y _{max} - Up	y _{max} + Up	Bestimmungsmethode
A008	Feststoffe (Staub)	mg/rn³ N,tır	8,5	0,8 p = 0,95	8	9	x Doppelbestimmung Indirekter Ansatz
A008	NH3	mg/rn³ N,tır	2,6	0,8 p = 0,95	2	3	x Doppelbestimmung Indirekter Ansatz
A008	NOx als NO2	mg/rn³ N,tir	4,2	3,3 p = 0,95	1	8	Doppelbestimmung x Indirekter Ansatz

Bemerkungen

Da die Messstelle (bzgl. Erreichbarkeit der Netzpunkte) ruicht den Anforderungen der DIN EN 15259 entspricht, ist ein nicht quantifizierbarer Beitrag zur angegebenen Messunsicherheit hinzuzurechnen.

6.4 Diskussion der Ergebnisse

Die ermittelten Messergebnisse weisen im Hinblick auf

- die Betriebsbedingungen (Einsatzstoffe im Messzeitraum, Temperaturen etc.),
- die Betriebsweise,
- · die Abgasreinigung,
- den Produktionsablauf,
- · die Art und Funktion der Abluftbehandlung und
- · die messtechnischen Abläufe

keine Unplausibilitäten auf.

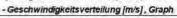
Die Plausibilitätsprüfung erfolgte unter Berücksichtigung folgender Sachverhalte:

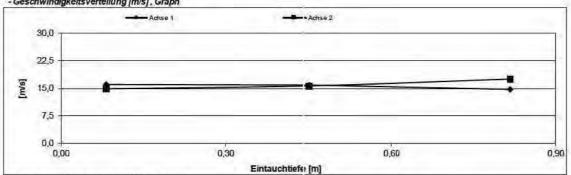
- · Vorwissen von der in Rede stehenden Anlage
- Vergleich von Messergebnissen miteinander
- · Korrelation von Signalverläufen mit Betriebszuständen

Seite 20 von 26 Zeichen/Erstelldatum: IS-US1-MAN/Na / 26.09.2024 Berichtsnummer: 3997506_BASF_Trilon1_EMI_2024

Prüflaboratorium Emissionsmessungen/Kallibrierungen Messstelle nach § 29b BlmSchG - DAkkS Akkreditierung nach DIN EN ISO/IEC 17025

Fachlich Verantwortlicher	Projektleiter




Anhang

7.1 Mess- und Rechenwerte

- Bericht-Nr.	and the same of th	BASF_T	rilon1_El	VII_202	4	- Anlaige	Trilonfa	ibrik I			
- Firma	BASF SE					- Quelle	800A				
 Probenahmeparam 										50075	- 65
- Messdatum	18.06.202	24				- Uhrzeit	von	10:40	bis	10:50	Uhr
- Bernerkung											
- Beschreibung Mes	squerschnit				10.000			-			
Durchmesser		[m]	0,900	u _c =	0,018	geracie Einlaufstrecke geracie Auslaufstrecke		[m]	2,15 2,25		
Fläche Messebene A		[m²]	0,6362	Uc=	0,015	Mess:öffnungen		2			
Hydraulischer Ø (HD)		[m]	0,900		144	Innenwand		glattwand	ig		
- Anforderung DIN 18	5259 (6.2) / D	IN 13284	-1			- Empfehlung DIN 15	259				
Abgasströmung Winke	Charles of Line of Land	thse < 15°			ja	geracte Eintaufstrecke	(2,15 m)	>=5 x HD (4,5 m)?		nein
keine lokale negative S					ja	geracte Austaufstrecke	(2,25 m)>=2xHD	(1,8 m)?		ja
o MAX / o MIN mit 1,2		?			ja						
Dynamischer Druck > :		Sar and			ja						
Wandabstand MP 1/0		3% v.Ø	7		ja	- 70 Tel 10 Tel					
 Mittlere Abgasparar 					200	- Mitt lerer Volumens	rom	7 200	- 1510791		-
Abgastemperatur	Tc	L.C.I	47,8	u _c =	0,2	Betriebszustand		[m³/h]	35.922	u _c =	911
						Normi (feucht)		[m³/h]	30.085	u _c =	673
Feuchte	*)	[kg/m³]	0,099	u _o =	0,004	Norm (trocken)		[m³/h]	26.770	u _c =	597
Feuchte	ф H2O	[Vol%]	11,0	u _c =	0,4	Up Norm (trocken)		[m³/h]	1.193	4,5 %	K=2
Dichte	p*)	[kg/m³]	1,295								
Dichte	p Betrieb	[kg/m³]	1,035	U _o =	0,006						
Luftdruck	Patm	[Pa]	99.770	u _c =	173						
Statischer Druck	P stat	[Pa]	-75	Uc =	0,9						
Absolutdruck	Pc	[Pa]	99.695	$u_{\rm c} =$	173						
Dynamischer Druck	ΔP	[Pa]	128,6	u _c =	1,3						
Geschwindigkeit	0	[m/s]	15,76	uc =	0,17	- Korrektur mittlere C	eschwi	ndigkeit (W	andeffekte)	
Sauerstoff		[Vol.%]	19,7	Uc =	0,6	Ausgleichsfaktor für W	andfläch	ien			
Kohlendioxid		[Vol.%]	0,6	u _c =	0,0	glattv/andig	0,995	midinet\		15.00	mlo
Rest als Stickstoff		[Vol.%]	79,8			mittle re Geschwindigk Entsprechend sind au	Sec. 100		e korrigiert	15,68	TIVS

*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

			and the second second				
m/s], Ta	belle			70			
1	2	3				Out Falter	Callie
0,08	0,45	0,82				Crest Paktor	Schiefe
16,01	15,87	14,70	-			1,03	1,09
14,88	15,67	17,46				1,09	1,17
	<1	3? ja	- Schiefe G	esamt Profil =		< 1,2 ? ja	
	1 0,08 16,01	0,08 0,45 16,01 15,87 14,88 15,67	n/sj, Tabelle 1 2 3 0,08 0,45 0,82 16,01 15,87 14,70 14,88 15,67 17,46	m/s], Tabelle 1 2 3 0.08 0.45 0.82 16,01 15,87 14,70 14,88 15,67 17,46	1 2 3 0,08 0,45 0,82 16,01 15,87 14,70 14,88 15,67 17,46	1 2 3	m/sj, Tabelle 1 2 3 Crest Faktor 16,01 15,87 14,70 1,03 14,88 15,67 17,46 1,09

Berichtsnummer: 3997506_BASF_Trilon1_EMI_2024

") Normzustand (trocken), (273 K; 1013 hPa)

Anhang: Mess- und Rechenwerte - Berichts-Nr.: 3997506_BASF_Trilon1_EMI_2024 - Anlage: Trilon I - Quelle: Firma: BASF SE 800A **Out-Stack Planfilter** Messkomponente: Feststoffe (Staub) Probenahmeparameter Randbedingungen: - Anzahl durchgeführter Einzelmessungen: Bemerkung: Messung-Nr. 18.06.24 18.06.24 18.06.24 Messdatum: Uhrzeit: von. 11:03 11:37 12:13 11:33 12:07 bis: 12:43 - Luftdruck: [hPa] 998 998 998 Mittleres Abgasvolumen (N, tr): $[m^3/h]$ 26.770 26.770 26.770 Standardabweichung uc: [m3/h] 597 597 597 15,7 Mittlere Abgasgeschwindigkeit: 15,7 15,7 [m/s]Abgasreinigung vorhanden ? ja ja ja Probenahmeparameter Feststoffe (Staub): 26,362 - Zählerstand Gasuhr Messbeginn: [m³] 25,006 27,759 26,350 Zählerstand Gasuhr Messende: [m3] 27,748 29,138 Kalibrierfaktor Gasuhr 1,002 1,002 1,002 Abgesaugtes Teilgasvolumen: 1,347 1,389 1,382 m^3 Mittlerer Unterdruck Gasuhr [hPa] 150 150 150 25 Mittlere Temperatur Gasuhr. [°C] 26 26 Abgesaugtes Teilgasvolumen (N, tr): 1) 1,081 1,109 [m3] * 1,103 Durchmesser Düse: [mm] 8 8 8 1,02 Isokinetischer Faktor. 1,05 1,04 1) Bei dem abgesaugten Teilgasvolumen Staub wurde das abgesaugte Normvolumen des Teilstnomes NH3 mit berücksichtigt. Parameter Labor Feststoffe (Staub): Die Auswaage Sonde wurde Massenanteilig auf die Einzelmessungen verteilt - Bestimmungsgrenze: [mg/Pr.] 0,3 0,3 0,3 0,27 Bestimmungsgrenze: [mg/m3 *] 0.27 0,27 Analysenergebnisse Feststoffe (Staub) : Gesamtauswaage [mg/Pr.] 9.2 8.6 8.6 davon Auswaage Filter [mg/Pr.] 5,5 5,14 5,11 10,7 davon Auswaage Sonde [mg/Pr.] Feldblindwert [mg/Pr.] < 0,3 Blindwerte umgerechnet auf abgesaugte Volumina: Feldblindwert [mg/m³ *] 0,27 Messergebnisse Einzelmessungen Feststoffe (Staub): Massenkonzentrationen [mg/m3 *] 8,5 7,7 7,7 0,36 0,36 Standardabweichung uc: [mg/m3 *] 0,38 Massenstrom: [kg/h] 0,227 0,206 0.206 Standardabweichung uc: 0,011 0,010 0,010 [kg/h] Messergebnisse Zusammenfassung Feststoffe (Staub): Messung 1 bis 3 MW MIN MAX Bemerkungen MW = Mittelwert [mg/m3 *] 8.0 7,7 8.5 Massenkonzentrationen Standardabweichung uc: 0,37 0,36 0,38 MIN = Minimalwert [mg/m3 *] MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze 0,206 Massenstrom: [kg/h] 0,213 0,227 Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze Standardabweichung uc: 0,010 0,010 0,011 [kg/h]

"") Normzustand (feucht), (273 K; 1013 hPa)

Seite 23 von 26 Zeichen/Erstelldatum: IS-US1-MAN/Na / 26.09.2024 Berichtsnummer: 3997506_BASF_Trilon1_EMI_2024

- Firma: BASF SE	2024		 Anlage: Quelle: 	Trilon I A008			
Messkomponente:		NH3					
Probenahmeparameter Randbedingungen: - Anzahl durchgeführter Einzelmessungen:		·		3			
- Bernerkung:				i			1
- Messung-Nr.:		1	2	3			
- Messdatum:		18.06.24	18.06.24	18.06.24			
- Uhrzeit :	von:	11:03	11:37	12:13			
	bis:	11:33	12:07	12:43			
- Luftdruck:	[hPa]	998	998	998			
- Mittleres Abgasvolumen (N, tr):	[m³/h]	26.770	26.770	26.770			
Standardabweichung uc:	[m³/h]	597	597	597			
			Ì				
10.000 A STORY OF THE STORY OF							
- Abgasreinigung vorhanden ?		nein	nein	nein			
Note: A secretary line				-4			
Probenahmeparameter NH3:	f- 41	I non I	n oon T	0.000		1	1
- Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000			
- Zählerstand Gasuhr Messende: - Kalibrierfaktor Gasuhr	[m ₃]	0,055	0,055	0,053			
	fm31			0,990			
- Abgesaugtes Teilgasvolumen:	[m ₃]	0,055	0,054	0,052			
- Mittlere Temperatur Gasuhr:	[°C]	27	28	27			1
- Abgesaugtes Teilgasvolumen (N, tr): 1)	[m³] *	0,049	0,048	0,047			
- Bestimmungsgrenze:	[mg/Pr.]	0,02	0,02	0,02			
- Bestimmungsgrenze:	[mg/Pr.] [mg/m³ *]	0,02 0,40	0,02	0,02 0,42			
- Bestimmungsgrenze: - Bestimmungsgrenze:							
- Bestimmungsgrenze: - Bestimmungsgrenze:		0,40		0,42			
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1	[mg/m³ *] [mg/Pr.] [mg/Pr.]	0,40 0,14 0,12	0,41 0,15 0,13	0,42 0,14 0,12			
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2	[mg/Pr.] [mg/Pr.] [mg/Pr.]	0,40 0,14 0,12 < 0,02	0,41 0,15 0,13 < 0,02	0,42 0,14 0,12 0,02			
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1	[mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.]	0,40 0,14 0,12 < 0,02 100,0	0,41 0,15 0,13	0,42 0,14 0,12			
davon Waschflasche 1 davon Waschflasche 2	[mg/Pr.] [mg/Pr.] [mg/Pr.]	0,40 0,14 0,12 < 0,02	0,41 0,15 0,13 < 0,02	0,42 0,14 0,12 0,02			
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol	[mg/m³*] [mg/Pr.] [mg/Pr.] [mg/Pr.] [%] [mg/Pr.]	0,40 0,14 0,12 < 0,02 100,0 < 0,02	0,41 0,15 0,13 < 0,02	0,42 0,14 0,12 0,02			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse NH3: - Gesamtprobe - davon Waschflasche 1 - davon Waschflasche 2 - Abscheidegrad Waschflasche 1 - Feldblindwert	[mg/m³*] [mg/Pr.] [mg/Pr.] [mg/Pr.] [%] [mg/Pr.]	0,40 0,14 0,12 < 0,02 100,0 < 0,02	0,41 0,15 0,13 < 0,02	0,42 0,14 0,12 0,02			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [%] [mg/Pr.] umina: [mg/m³ *]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40	0,41 0,15 0,13 < 0,02 100,0	0,42 0,14 0,12 < 0,02 100,0			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [%] [mg/Pr.] umina: [mg/m³ *]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 0,40 2,8	0,41 0,15 0,13 < 0,02 100,0	0,42 0,14 0,12 < 0,02 100,0			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [%] [mg/Pr.] umina: [mg/m³ *]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40	0,41 0,15 0,13 < 0,02 100,0	0,42 0,14 0,12 < 0,02 100,0			
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse NH3: - Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 - Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc:	[mg/m³*] [mg/Pr.] [mg/Pr.] [mg/Pr.] [%] [mg/Pr.] umina: [mg/m³*] [mg/m³*]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41	0,42 0,14 0,12 < 0,02 100,0 2,9 0,40			
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] umina: [mg/m³ *] [mg/m³ *]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40 0,074	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41 0,082	0,42 0,14 0,12 < 0,02 100,0 2,9 0,40 0,077			
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc:	[mg/m³*] [mg/Pr.] [mg/Pr.] [mg/Pr.] [%] [mg/Pr.] umina: [mg/m³*] [mg/m³*]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41	0,42 0,14 0,12 < 0,02 100,0 2,9 0,40			
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung NH3:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] umina: [mg/m³ *] [mg/m³ *]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40 0,074 0,010	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41 0,082 0,011	0,42 0,14 0,12 0,02 100,0 2,9 0,40 0,077 0,010	Remodule		
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung NH3: Messergebnisse Zusammenfassung NH3: Messeng 1 bis 3	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/m³ *] [mg/m³ *] [mg/m³ *]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40 0,074 0,010	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41 0,082 0,011 MIN	0,42 0,14 0,12 0,02 100,0 2,9 0,40 0,077 0,010	Bemerkun,		
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc: Messergebnisse Zusammenfassung NH3: Messung 1 bis 3 - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h] [kg/h]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40 0,074 0,010 MW 2,9	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41 0,082 0,011 MIN 2,8	0,42 0,14 0,12 0,02 100,0 2,9 0,40 0,077 0,010 MAX 3,1	MW = Mitte	lwert	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung NH3: Messergebnisse Zusammenfassung NH3: Messeng 1 bis 3	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/m³ *] [mg/m³ *] [mg/m³ *]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40 0,074 0,010	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41 0,082 0,011 MIN	0,42 0,14 0,12 0,02 100,0 2,9 0,40 0,077 0,010	MW = Mitte MIN = Minir	lwert malwert	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc: Messergebnisse Zusammenfassung NH3: Messung 1 bis 3 - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h] [kg/h]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40 0,074 0,010 MW 2,9	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41 0,082 0,011 MIN 2,8	0,42 0,14 0,12 0,02 100,0 2,9 0,40 0,077 0,010 MAX 3,1	MW = Mitte MIN = Minir MAX = Max	lwert malwert cimalwert	sqrenze
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc: Messergebnisse Zusammenfassung NH3: Messung 1 bis 3 - Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [%] [mg/Pr.] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h] [mg/m³ *]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40 0,074 0,010 MW 2,9 0,40	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41 0,082 0,011 MIN 2,8 0,40	0,42 0,14 0,12 0,02 100,0 2,9 0,40 0,077 0,010 MAX 3,1 0,41	MW = Mitte MIN = Minir MAX = Max n.n. = klein	lwert malwert cimalwert er Bestimmungs	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse NH3: Gesamtprobe davon Waschflasche 1 davon Waschflasche 2 Abscheidegrad Waschflasche 1 Feldblindwert Blindwerte umgerechnet auf abgesaugte Vol Feldblindwert Messergebnisse Einzelmessungen NH3: - Massenkonzentrationen Standardabweichung uc: Messergebnisse Zusammenfassung NH3: Messung 1 bis 3 - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/Pr.] [mg/m³ *] [mg/m³ *] [kg/h] [kg/h] [kg/h]	0,40 0,14 0,12 < 0,02 100,0 < 0,02 < 0,40 2,8 0,40 0,074 0,010 MW 2,9	0,41 0,15 0,13 < 0,02 100,0 3,1 0,41 0,082 0,011 MIN 2,8	0,42 0,14 0,12 0,02 100,0 2,9 0,40 0,077 0,010 MAX 3,1	MW = Mitte MIN = Minir MAX = Max n.n. = klein Die Mittelwe	lwert malwert cimalwert	erfolgt mit

Seite 24 von 26 Zeichen/Erstelldatum: IS-US1-MAN/Na / 26.09.2024 Berichtsnummer: 3997506_BASF_Trilon1_EMI_2024

Anhang: Mess, und Rechenwerte

milliong. Micas	- und recircimente			
- Berichts-Nr.:	3997506 BASF Trilon1 EMI 2024	- Anlage:	Trilon I	
- Firma:	BASF SE	- Quelle:	A008	

Messkomponente: NOx als NO2

 Probenahmeparameter Randbedingunge Anzahl durchgeführter Einzelmessungen: 			3					
- Bemerkung:								
- Messung-Nr.:		1	2	3		· 1		
- Messdatum:		18.06.24	18.06.24	18.06.24				
- Uhrzeit :	von: bis:	11:03 11:33	12:10 12:40	12:40 13:10				
- Luftdruck:	[hPa]	998	998	998				
- Mittleres Abgasvolumen (N, tr): Standardabweichung uc:	[m³/h] [m³/h]	26.770 597	26.770 597	26.770 597				
- Abgasreinigung vorhanden ?		nein	nein	neio	- 5			

Parameter Messgerät NOx als NO2:

- Eingestellter Messbereich 0 bis	[mg/m³ *]	205,3	205,3	205,3	
- Bestimmungsgrenze:	[mg/ms *]	1,0	1,0	1,0	
Auswertung NOx als NO2:					
Messwert	[mg/m³ *]	4,1	4,1	4,2	

Messergebnisse Einzelmessungen NOx als NO2:

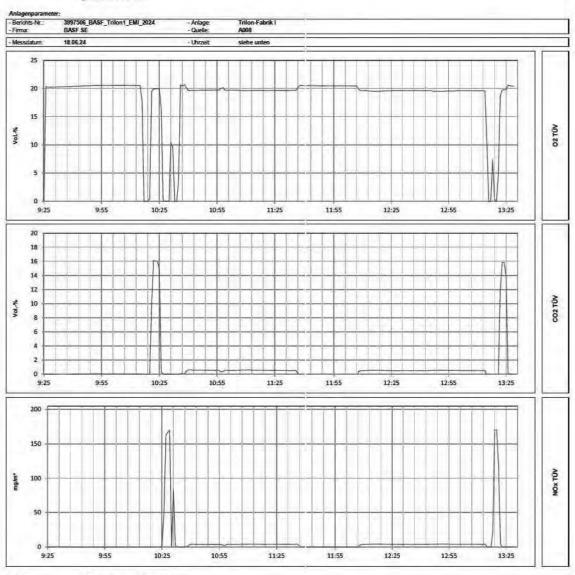
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	4,1 1,65	4,1 1,65	4,2 1,65	
- Massenstrom: Standardabweichung uc:	[kg/h] [kg/h]	0,109 0,044	0,109 0.044	0,112 0.044	

Messergebnisse Zusammenfassung NOx als NO2:

Messung 1 bis 3		MW	MIN	MAX	Bemerkungen
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	4,1 1,65	4,1 1,65	4,2 1,65	MW = Mittelwert MIN = Minimalwert
					MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze
- Massenstrom: Standardabweichung uc:	[kg/h] [kg/h]	0,110 0,044	0,109 0,044	0,112 0,044	Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze
1) Normzustand (trocken), (273 K; 1013 hPa)		**) Normzusta	and (feucht), (2	73 K; 1013 hPa	

Seite 25 von 26 Zeichen/Erstelldatum: IS-US1-MAN/Na / 26.09.2024 Berichtsnummer: 3997506_BASF_Trilon1_EMI_2024

Anhang: Mess-und Rechenwerte


- Berichts-Nr.:	3997506_BASF_Tri- lon1 EMI 2024	- Anlage:	Trilon-Fabrik I
- Firma:	BASF SE	- Quelle:	A008
- Messdatum:	18.06.24	- Uhrzeit:	siehe unten

Dokumentation Driftberechnung

Messkomponente	O2	CO2	NOx
Einheit	[Vol%]	[Vol%]	[mg/m³]
Messbereichsende	25,00	20,00	205,0
Nullpunkt Soll	0,00	0,00	0,00
Prüfwert Soll	19,90	16,00	168,9
Uhrzeit vor	10:19	10:19	10:19
Nullpunkt IST vor Messung	0,01	-0,01	0,00
Prüfwert IST vor Messung	19,92	16,01	169,4
Uhrzeit nach	13:17	13:17	13:17
Nullpunkt IST nach Messung	-0,06	-0,34	0,00
Prüfwert IST nach Messung	19,75	15,81	170,4
Drift Dauer Minuten	178	178	178
Drift Endpunkt %	-0,50	0,81	0,61
Drift Nullpunkt %	-0,3:5	-2,04	0,00
Drift Korrektur erfolgt	ia la	ja	ja

7.2 Grafische Darstellung der zeitlichen Verläufe kontinuierlich gemessener Komponenten

7.3 Hausverfahren nicht relevant

TÜV SÜD Industrie Service GmbH

Messstelle nach § 29b BlmSchG Westendstraße 199 80686 München Standort Mannheim

Bericht

Anlage:

über die Durchführung von Emissionsmessungen

Diethylketon-Anlage

Bau S 606

Anlage-Nr.: 02.07

Betreiber: siehe Auftraggeber

Standort: Carl-Bosch-Straße 38

67056 Ludwigshafen

Auftragsdatum: 04.04.2024

Bestellzeichen: 1086815423

Messtermin: 23.08.2024

Berichtsnummer: 3997503_BASF_Diethylketon-An-

lage EMI_2024_BER_Rev01

Aufgabenstellung: wiederkehrende Emissionsmessung ent-

sprechend den Vorgaben des Genehmi-

gungsbescheides

Befristete Bekanntgabe: 18.02.2026

Diese Revision ersetzt den Bericht 3997503_BASF_Diethylketon-An-

lage_EMI_2024_BER.

Änderungen wurden grau hinterlegt.

DAKKS

Deutsche
Akkreditierungsstelle

Die Akkreditierung gilt nur für den in der Urkundenanlagi aufgeführten Akkreditierungsumfann

Datum: 09.01.2025

Unsere Zeichen: IS-US1-MAN/Ba

Dieses Dokument besteht

aus 24 Seiten. Seite 1 von 24

Die auszugsweise Wiedergabe des Dokumentes und die Verwendung zu Werbezwecken bedürfen der schriftlichen Genehmigung der TÜV SÜD Industrie Service

GmbH.

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände.

Amtsgericht München HRB 96 869 USt-IdNr. DE129484218 Informationen gemäß § 2 Abs. 1 DL-InfoV unter tuvsud.com/impressum

Zusammenfassung

Quelle	Messkomponente	Einheit	Maximaler Messwert minus Up	Maximaler Messwert plus Up	Emissions- begrenzung	Betriebs- zustand
A054	Kohlenmonoxid (CO)	mg/m³ N,tr	n.n.	n.n.	80	
A054	NOx als NO2	mg/m³ N,tr	107	132	200	

der Emissionsbegrenzung bezogen.

Inhaltsverzeichnis

1	Formulierung der Messaufgabe	3
2	Beschreibung der Anlage und der gehandhabten Stoffe	7
3	Beschreibung der Probenahmestelle	9
4	Mess- und Analyseverfahren, Geräte	12
5	Betriebszustand der Anlage während der Messungen	16
6	Zusammenstellung der Messergebnisse	17
7	Anhang	19

1 Formulierung der Messaufgabe

1.1 Auftraggeber

BASF SE Firma:

Anschrift: 67056 Ludwigshafen

Ansprechpartner:

Telefon:

1.2 Betreiber

> Firma: siehe Auftraggeber Anschrift: siehe Auftraggeber

Ansprechpartner:

Telefon:

Arbeitsstätten-Nr.:

1.3 Standort

> Anschrift: siehe Auftraggeber

Gebäude: Bau S 606 Emittent: A054

1.4 Anlage

Diethylketon-Anlage

Anlage gemäß Anhang der 4. BlmSchV, Ziffer 4.1.2 G/E

Anlagen zur Herstellung von Stoffen oder Stoffgruppen durch chemische, biochemische oder biologische Umwandlung in industriellem Umfang,...

Zur Herstellung von sauerstoffhaltigen Kohlenwasserstoffen wie Alkohole, Aldehyde, Ketone, Carbonsäuren, Ester, Acetate, Ether, Peroxide, Epoxide.

1.5 **Datum der Messung**

> Zeitpunkt/Zeitraum der Messung: 23.08.2024 Datum der letzten Messung: 09.02.2022

Datum der nächsten Messung: 2027

1.6 Anlass der Messung

> Messungen nach § 28 BlmSchG (erstmalige und wiederkehrende Messung bei genehmigungsbedürftigen Anlagen)

1.7 Aufgabenstellung

Zur Erfüllung der Auflagen des Genehmigungsbescheides in Bezug auf die nachstehend in Kapitel 1.8 aufgeführten Komponenten, beauftragte die oben genannte Firma die gemäß § 29b Bundes-Immissionsschutzgesetz (BImSchG) benannte Messstelle "TÜV SÜD Industrie Service GmbH" mit der Durchführung entsprechender Emissionsuntersuchungen.

Bescheid/Auflagen		
Ausstellende Behörde	Stadtverwaltung Ludwigshafen	
	Struktur- und Genehmigungsdirektion Süd	
Aktenzeichen	4-151H.We – 1192-05	
	23-5/5.1/2019/0301/FR	
Ausstelldatum	31.08.2005	
	02.12.2019	

Es sind folgende Grenzwerte festgelegt:

Schadstoff	Grenzwert
Staub	5 mg/m3
Schwefeloxide angegeben als Schwefeldioxid (SO ₂)	2.77.47.0
Stickstoffoxide, angegeben als Stickstoffdioxid (NO ₂)	200 mg/m3
Kohlenmonoxid	80 mg/m3

Die Emissionsgrenzwerte sind als Masse der emittierten Stoffe, bezogen auf das Volumen des Abgases im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchtegehaltes an Wasserdampf und einen Sauerstoffgehalt von 3% zu verstehen.

Laut Stellungnahme des Erdgaslieferanten (siehe hierzu Ausführungen im Bericht über die Emissionsmessung vom 16.12.2009; DEKRA Bericht Nr.: 1323/12821/LM-55015323 vom 27.05.2010) wird ausschließlich Erdgas geliefert, welches "technisch frei" von Staub sein muss.

Durch mehrfache Filterung des Erdgases vor jeder Gasmessanlage wird sichergestellt, dass das Erdgas technisch frei von Staub ist. Auftragsgemäß wurde daher auf Grundlage der vorstehenden Angaben des Lieferanten und der Vorgehensweise bei den vorangegangenen Untersuchungen auf eine Staubmessung verzichtet.

Die Überprüfung des Grenzwertes bzgl. Schwefeloxide, angegeben als SO2 erfolgte auftragsgemäß über den Schwefelgehalt im Brennstoff (Erdgas). Der Gesamtschwefelgehalt im Erdgas wurde vom Erdgaslieferanten mit 2,373 mg/m³ (Mittelwert August 2024) angegeben.

1.8 Messobjekte

Messkomponente Schadstoffe	Anzahl der Einzelmessungen Art der Erfassung
Stickstoffoxide, angegeben als Stickstoffdioxid (NO ₂)	3 à 30 min, kontinuierlich
Kohlenmonoxid	3 à 30 min, kontinuierlich

Messkomponente Bezugsgrößen und Randparameter	Anzahl der Einzelmessungen Art der Erfassung
Abgasgeschwindigkeit	diskontinuierlich
Abgastemperatur	kontinuierlich
Druck im Abgaskanal	diskontinuierlich
Feuchtegehalt	1 à 30 min, diskontinuierlich
Kohlendioxid	3 à 30 min, kontinuierlich
Sauerstoff	3 à 30 min, kontinuierlich

1.9	Ortsbesichtigung vor	Messdurchführung
1.0	Ortoboolollinguing voi	moodadi omidin ding

Out-basis bit in an in	all and by an a fittle all an area
 Ortsbesichtigung	direndetiling am
Ortoboolchidania	dui ci luciui il aiii.

keine Ortsbesichtigung durchgeführt, da mit den vorherigen Messungen an dieser Anlage schon befasst.

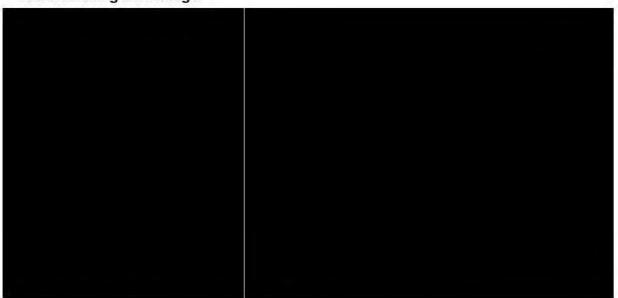
1.10 Messplanabstimmung

- ☐ keine Messplanabstimmung durchgeführt

1.11 An der Messung beteiligte Personen

1.12 Beteiligung weiterer Institute Keine

1.13 Fachlich Verantwortliche



- 2 Beschreibung der Anlage und der gehandhabten Stoffe
- 2.1 Bezeichnung der Anlage

Siehe Ziffer 1.4

Beschreibung der Anlage 2.2

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Auslass	Höhe über Grund (m)	Austrittsfläche (m²)	Rechts- wert/Hochwert	Bauausführung
A 054	14	0,021	32 457513 / 5485043	Stahl

2.4 Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe

- 2.5 Betriebszeiten nach Betreiberangaben
- 2.5.1 Gesamtbetriebszeit

- 2.5.2 Emissionszeit nach Betreiberangaben entspricht der Gesamtbetriebszeit
- 2.6 Einrichtung zur Erfassung und Minderung der Emissionen
- 2.6.1 Einrichtung zur Erfassung der Emissionen
- 2.6.1.1 Art der Emissionserfassung

Geschlossenes Rohrleitungssystem, Ventilator, Kamin

2.6.1.2 Ventilatorkenndaten

Auslass	A 054		
Bezeichnung	V1391		
Hersteller	FIMA		
Baujahr	2005		
Тур	RK1 U355 KBGX GK180		
Herstell-Nr.	1/20500417/20		
Nennleistung [m³/h]	16.000		
Betriebsdruck [mbar]	62		
Drehzahl [1/min]	2900		
Motorleistung [kW]	55		

2.6.2 Einrichtung zur Verminderung der Emissionen

Einrichtung zur Verminderung der Emissionen waren zum Zeitpunkt der Prüfungen nicht vorhanden.

2.6.3 Einrichtung zur Verdünnung des Abgases

Nicht zutreffend.

3 Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Quelle	A054
Lage	im Freien, über Treppen erreichbar
Höhe über Grund	13 m
Verlauf des Abgaskanals	senkrecht
Abgasrohr-Geometrie / Durchmesser	rund / 0,165
Hydraulischer Durchmesser	0,165 m
Messquerschnitt	0,021 m²
freie Einlaufstrecke	2 m
freie Auslaufstrecke	1,5 m
≥ 5 D _h Ein- und 2 D _h Auslauf (5 D _h vor Mündung)	ja

3.1.2 Arbeitsfläche und Messbühne

Quelle	A054
dauerhafte Messbühne	ja
Tragfähigkeit i.O.	ja
ausreichende Arbeitsfläche und Arbeitshöhe	ja
ausreichender Traversierraum zur Er- reichung aller Messpunkte im Mess- querschnitt	ja
keine Einflüsse durch Umgebungsbedingungen auf Messergebnisse?	ja

3.1.3 Messöffnungen

Quelle	A054	
Anzahl	2	
Größe	30 mm	
Ausführung	Bohrung	
Lage am Kanal	übereinander	

3.1.4 Strömungsbedingungen im Messquerschnitt

Quelle	A054
Winkel Gasstrom zu Mittelachse Abgaskanal < 15 °	ja
keine lokale negative Strömung?	ja
Verhältnis höchste/niedrigste örtliche Geschwindigkeit im Messquerschnitt < 3 : 1	ja
Mindestgeschwindigkeit in Abhängig- keit vom verwendeten Messverfahren	ja

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Quelle	A054
Messbedingungen entsprechend DIN EN 15259 erfüllt?	ja
ergriffene Maßnahmen	keine
zu erwartende Auswirkungen auf das Messergebnis	keine
Empfehlungen und Hinweise zur Verbesserung der Messbedingungen	keine

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte / Messachse	
Abgasgeschwindigkeit, Temperatur, Druck, Feuchte	1	1	0,08
Stickoxide, Kohlenmonoxid, Kohlendioxid, Sauerstoff	1	1	0,08

3.2.2	Homogenitätsprüfung		
	☐ durchgeführt (siehe Ergebnisse in Kap. 6)		
	□ nicht durchgeführt, weil:		
	□ Netzmessung		
	☐ liegt vor		
	Datum der Homogenitätsprüfung:		
	Berichts-Nr.:		
	Prüfinstitut:		
	Ergebnisse der Homogenitätsprüfung:		
	☐ Messung an einem beliebigen Punkt		
	☐ Messung an einem repräsentativen Punkt Achse:		
	Eintauchtiefe:		
	□ Netzmessung		
3.2.3	Komponentenspezifische Darstellung		
	Nicht zutreffend		

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Messpunkte Lage im Netz gemäß DIN EN 15259

Messfühler Pitot-Staurohr Typ L

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

Messbereich 0 bis 1250 Pa

Bestimmungsgrenze 5 Pa kontinuierliche Ermittlung nein

4.1.2 Statischer Druck im Abgaskamin

Richtlinie DIN EN 16911-1

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druck-

messmodul FDA

Hersteller Ahlborn, Holzkirchen Messbereich -1250 bis 1250 Pa

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

4.1.4 Abgastemperatur

Richtlinie VDI/VDE 3511 Blatt 2

Messeinrichtung Digitalanzeigeinstrument Typ Almemo 2690 mit

T-Modul FT FZA 9020-FS (NiCr-Ni)

Hersteller Ahlborn, Holzkirchen

Messfühler Thermoelement NiCr-Ni (Typ K)

Messbereich -200 bis +1370°C

kontinuierliche Ermittlung ja

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Richtlinie DIN EN 14790

Ermittlungsmethode Kondensation als Wasser und Adsorption auf

Silikagel

Messeinrichtung Waage, Typ TE 412

Entnahmesonde Edelstahl, Länge 0,1 m, abgasbeheizt

Partikelfilter Filterhülse Quarzwatte gestopft nach Entnah-

mesonde

Gasprobenehmer GS 212

Analyseverfahren Gravimetrie

Messgerät Waage, Typ TE 412

Hersteller Sartorius
Messbereich 4-40 Vol.-%

4.1.6 Abgasdichte

Bestimmung berechnet unter Berücksichtigung der Abgas-

zusammensetzung, des Luftdrucks, der Abgastemperatur und der Druckverhältnisse im Kanal

4.1.7 Abgasverdünnung

entfällt

4.1.8 Volumenstrom

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Mittlere Abgasgeschwindigkeit

Messverfahren siehe 4.1.1 Messeinrichtung siehe 4.1.1

Querschnittsfläche

Messverfahren Messung mit Messstab

Messeinrichtung Messstab

4.2 Automatische Messverfahren

4.2.1 Messkomponente Sauerstoff, Stickstoffoxide, Kohlendioxid

4.2.1.1 Messverfahren

O₂ Paramagnetische Gasanalyse

nach DIN EN 14789

NO_x Chemilumineszenz mit NO₂-Konverter (CLD)

nach DIN EN 14792

CO Nicht Dispersive Infrarot-Gasanalyse (NDIR)

nach DIN EN 15058

CO₂ Nicht-Dispersive-Infrarot-Gasanalyse (NDIR)

4.2.1.2 Analysator

Hersteller Horiba Typ PG 350

4.2.1.3 Eingestellter Messbereich

 $\begin{array}{lll} O_2 & & 0 - 25 \ \text{Vol.-\%} \\ \text{NO}_X & & 0 - 250 \ \text{ppm} \\ \text{CO} & & 0 - 200 \ \text{ppm} \\ \text{CO}_2 & & 0 - 20 \ \text{Vol.-\%} \\ \text{Ausgangssignal} & & 4 - 20 \ \text{mA} \end{array}$

4.2.1.4 Gerätetyp eignungsgeprüft

BAnz AT 05.03.2013 B10

4.2.1.5 Probenahme und Probenaufbereitung

Entnahmesonde Edelstahl, Länge 0,1 m, abgasbeheizt Staubfilter Sintermetallfilter nach Sonde, beheizt auf

160°C

Probegasleitung

vor Gasaufbereitung Länge 5 m, Material: PTFE, beheizt auf 160°C nach Gasaufbereitung Länge 1,0 m, Material: PTFE, unbeheizt

Messgasaufbereitung

Messgaskühler Cooler ECM

Hersteller M & C Products Analysentechnik GmbH

Regeltemperatur 4°C Konverter integriert

4.2.1.6 Überprüfen von Null- und Referenzpunkt mit Prüfgasen

Nullgas Stickstoff (5.0)

Prüfgase

Mischgas O₂ / CO₂ 19,9 Vol.-% O₂ / 16,0 Vol.-% CO₂, Rest N₂

Hersteller Linde Zertifikat gültig bis 16.01.2027

Mischgas NO_X, CO 203 ppm NO_x, 163 ppm CO, Rest N₂

Hersteller Linde Zertifikat gültig bis 17.01.2026

4.2.1.7 Einstellzeit des gesamten Messaufbaus

Einstellzeit 20 Sekunden

4.2.1.8 Messwerterfassungssystem

Fabrikat/Typ

Messwertregistrierung und -auswertung durch elektronische Datenerfassung

Datenerfassungssystem "Trendows",

Trendbus-Module EA8-V/A
Hersteller E. Kirsten

Auswertung Tabellenkalkulationsprogramm

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

nicht Bestandteil der Prüfung

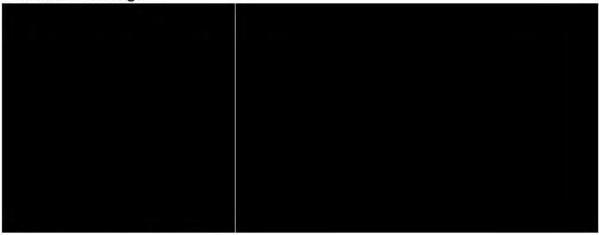
4.4 Messverfahren für partikelförmige Emissionen

nicht Bestandteil der Prüfung

4.5 Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u. ä.)

nicht Bestandteil der Prüfung

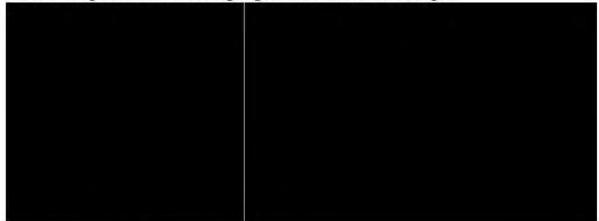
4.6 Geruchsemissionen


nicht Bestandteil der Prüfung

5 Betriebszustand der Anlage während der Messungen

Die Daten zur Beschreibung des Betriebszustandes wurden vom Betreiber zur Verfügung gestellt und auf Plausibilität geprüft. Während der Messung wurden diese Daten stichprobenartig kontrolliert.

5.1 Produktionsanlage


5.2 Abgasreinigungsanlagen

Nicht zutreffend

6 Zusammenstellung der Messergebnisse

6.1 Bewertung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Massenkonzentrationen:

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwer
A054	Kohlenmonoxid (CO)	mg/m³ N,tr	3 à 30 min	n.n.	n.n.	n.n.
A054	NOx als NO2	mg/m³ N,tr	3 à 30 min	117,3	113,0	119,5
n. = kleiner	Bestimmungsgrenze		Die angegebenen der Emissionsbeg			gen

Massenströme:

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwer
A054	Kohlenmonoxid (CO)	[kg/h]	3 à 30 min	n.n.	n.n.	n.n.
A054	NOx als NO2	[kg/h]	3 à 30 min	0,010	0,009	0,010

6.3 Messunsicherheiten

Quelle	Messkomponente	Einheit	y _{max}	Up	y _{max} - Up	y _{max} + Up	Bestimmungsmethode
A054	Kohlenmonoxid (CO)	mg/rn³ N,tr	n.n.	6,0 p = 0,95	n.n.	n.n.	x Doppelbestimmung Indirekter Ansatz
A054	NOx als NO2	mg/m³ N,tr	119,5	12,9 p = 0,95	107	132	x Doppelbestimmung Indirekter Ansatz

6.4 Diskussion der Ergebnisse

Die ermittelten Messergebnisse weisen im Hinblick auf

- die Betriebsbedingungen (Einsatzstoffe im Messzeitraum, Temperaturen etc.),
- · die Betriebsweise,
- · den Produktionsablauf,
- · die messtechnischen Abläufe

keine Unplausibilitäten auf.

Die Plausibilitätsprüfung erfolgte unter Berücksichtigung folgender Sachverhalte:

- · Vorwissen von der in Rede stehenden Anlage
- · Vergleich von Messergebnissen miteinander

Zwischen 10:35 – 10:37 mussten die Messungen wegen eines defekten Kühlers unterbrochen werden. Der Kühler wurde getauscht und die Messungen wurden fortgesetzt.

Prüflaboratorium Emissionsmessungen/Kalibrierungen

Messstelle nach § 29b BlmSchG - DAkkS Akkreditierung nach DIN EN ISO/IEC 17025

Fachlich Verantwortlicher	Projektieiter	
17		
	V	91

7 Anhang

- Crestfaktor Gesamt Profil =

7.1 Mess- und Rechenwerte

Bericht-Nr.	3997503	***************************************	***************************************	***************************************	***************************************	- Anlage	Diethyll	eton-Anlag	e	••••••••	***************************************
Firma	BASF SE	₽				- Quelle	A054	an in section of the section for the section			
Probenahmeparar	neter vor Ort										
Messdatum	23.08.20			,		- Uhrzeit	von	9:20	bis	9:25	Uhr
Bemerkung											
Beschreibung Mes	squerschnit	t									
Ourchmesser		[m]	0,165	u _c =	0,003	gerade Einlaufstrecke		[m]	2,00		
						gerade Auslaufstrecke		[m]	1,50		
Fläche Messebene A		[m²]	0,0214	u _e =	0,000	Messöffnungen		2			
tydraulischer Ø (HD)		[m]	0,165	~~~~~~		Innenwand		glattwandi	g		
Anforderung DIN 1						- Empfehlung DIN 15					
Abgasströmung Wink	And a second of the second	chse < 15°	•		ja	gerade Einlaufstrecke					ja
keine lokale negative					ja	gerade Auslaufstrecke	(1,5 m)	$>= 2 \times HD (0,$,33 m) ?		ja
MAX / v MIN mit 1					ja						
Dynamischer Druck >		001 0			ja						
Wandabstand MP 1/0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	> 3 % V. Ø	?		ja	J					
Mittlere Abgaspara	***************************************					- Mittlerer Volumenst	rom				
Abgastemperatur	Tc	[°C]	249,4	u _c =	1,2	Betriebszustand		[m³/h]	328	u _c =	27
						Norm (feucht)		[m³/h]	169	u _c =	8
Feuchte	*)	[kg/m³]	0,092	u _c =	0,003	Norm (trocken)	nonnesiumen min	[m³/h]	152	u _c =	7
euchte	ф Н2О	[Vol%]	10,2	u _c =	0,4	Up Norm (trocken)		[m³/h]	14	9,1 %	K=2
Dichte	p*)	[kg/m³]	1,316								
Dichte	p Betrieb	[kg/m³]	0,648	u _c =	0,004						
Luftdruck	Patm	[Pa]	99.870	u _c =	173						
Statischer Druck	P stat	[Pa]	6	u _c =	0,9						
Absolutdruck	Pc	[Pa]	99.876		173						
Dynamischer Druck	ΔΡ	[Pa]	8,4	u _c =	1,3						
Geschwindigkeit	0	[m/s]	4,28	uc =	0,34	- Korrektur mittlere G		adiakait (M/a	m d a ffalch	-1	
Sauerstoff		[Vol.%]	10,7	u _c =	0,3	Ausgleichsfaktor für W			mueneko	=)	
Kohlendioxid		3000 P						CII			
Koniendioxid		[Vol.%]	5,7	u _c =	0,2	glattwandig	0,995	different .		4.00	30%
Deat de Ordenser		D/-10/1	00.0			mittlere Geschwindigke			Contatal		m/s
Rest als Stickstoff		[Vol.%]	83,6			Entsprechend sind aud	naie vo	iumenstrome	komgien		
) bezogen auf Norma	The state of the s			en							
- Geschwindigkeits	rerteilung [m/	s], Graph	l ronnoronnoronn			iiiimia amoromooonoonoonoonoo		matuurin(uumintuumin)			
			_	Achs	e 1						
30,0											
22,5											
-											
15,0											
<u>E</u> 15,0											
75											
7,5											
radio I						- 1 V					
						*					
0,0					2000	Colorado Notes					0,
0,00				~~~~~~	Eintau	chtiefe [m]					
0,00	rerteilung [m/	s], Tabeli	le				······································				
0,00 Geschwindigkeits	***************************************	1									
0,00 Geschwindigkeits	Messpunkt						1	1		3	
0,00 - Geschwindigkeits	······································	0,08					1			3	
0,00 - Geschwindigkeits	uchtiefe [m]	····					<u> </u>				
0,00 Geschwindigkeits	uchtiefe [m]	0,08					<u></u>				

- Schiefe Gesamt Profil =

< 1,2 ?

nein

< 1,3 ?

ja

Anhang: Mess- und Rechenwerte

- Berichts-Nr.: 3997503 - Anlage: Diethylketon-Anlage A054 - Firma: BASF SE - Quelle:

Messkomponente:

Kohlenmonoxid (CO)

 Anzahl durchgeführter Einzelmessungen: 		3						
- Bemerkung:		M1	M2	M3				
- Messung-Nr.: - Messdatum:		1	2 23.08.24	3				
		23.08.24		23.08.24	1, 12	1 =		
- Uhrzeit :	von: bis:	10:05 10:35	10:37 11:07	11:07 11:37				
- Luftdruck:	[hPa]	999	999	1000		1.5		
- Mittleres Abgasvolumen (N, tr): Standardabweichung uc:	[m³/h] [m³/h]	152 7	152 7	152 7				
- Mittlere Abgastemperatur	[°C]	203	206	206				
- Bezugssauerstoff:	[Vol%]	3,0	3,0	3,0				
- Mittlerer Sauerstoffgehalt: Standardabweichung uc:	[Vol%] [Vol%]	10,8 0,08	10,9 0,08	10,9 0,08				
- Abgasreinigung vorhanden ?		nein	nein	nein				

Parameter Messgerät Kohlenmonoxid (CO):

- Eingestellter Messbereich 0 bis	[mg/m³ *]	250	2	250	250	
- Bestimmungsgrenze:	[mg/m³ *]	1,3		1,3	1,3	
Auswertung Kohlenmonoxid (CO):						
Messwert	[mg/m3 *]	13		13	e 13	

Messergebnisse Einzelmessungen Kohlenmonoxid (CO):

- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	<	1,3 1,69	<	1,3 1,69	<	1,3 1,69	
- Massenkonz. bez. auf 3 Vol% O2 Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	<	2,2 2,98	<	2,3 3,00	<	2,3 3,02	
Massenstrom: Standardabweichung uc:	[kg/h] [kg/h]	<	0,000	<	0,000	<	0,000 0,000	

Messergebnisse Zusammenfassung Kohlenmonoxid (CO):

Messung 1 bis 3		MW	MIN	MAX	Beme
- Massenkonzentrationen	[mg/m³ *]	n.n.	n.n.	n.n.	MW =
Standardabweichung uc:	[mg/m³ *]	1,69	1,69	1,69	MIN =
- Massenkonz. bez. auf 3 Vol% O2	[mg/m³ *]	n.n.	n.n.	n.n.	MAX
Standardabweichung uc:	[mg/m³ *]	3,00	2,98	3,02	n.n.
- Massenstrom:	[kg/h]	n.n.	n.n.	n.n.	Die N
Standardabweichung uc:	[kg/h]	0,000	0,000	0,000	ganze
*) Normzustand (trocken), (273 K; 1013 hPa)		**) Normzusta	nd (feucht), (2	73 K; 1013 hPa	1)

Bemerkungen	
MW = Mittelwert	
MIN = Minimalwert	
MAX = Maximalwert	
n.n. = kleiner Bestimmungsgrenze	
Die Mittelwertberechnung erfolgt m ganzer Bestimmungsgrenze	it

Seite 21 von 24 Zeichen/Erstelldatum: IS-US1-MAN/Ba / 09.01.2025 Berichtsnummer: 3997503_BASF_Diethylketon-Anlage_EMI_2024_BER:_Rev01

Anhang: Mess- und Rechenwerte

- Berichts-Nr.: 3997503 - Anlage: Diethylketon-Anlage - Firma: BASF SE - Quelle: A054

Messkomponente:

NOx als NO2

Probenahmeparameter Randbedingungen:

 Anzahl durchgeführter Einzelmessungen: 		3						
- Bemerkung:		M1	M2	M3				
- Messung-Nr.:		1	2	3				
- Messdatum:		23.08.24	23.08.24	23.08.24				
- Uhrzeit :	von:	10:05	10:37	11:07				
	bis:	10:35	11:07	11:37				
- Luftdruck:	[hPa]	999	999	1000				
- Mittleres Abgasvolumen (N, tr):	[m³/h]	152	152	152				
Standardabweichung uc:	[m³/h]	7	7	7				
- Mittlere Abgastemperatur	[°C]	203	206	206				
- Bezugssauerstoff:	[Vol%]	3,0	3,0	3,0				
- Mittlerer Sauerstoffgehalt:	[Vol%]	10,8	10,9	10,9				
Standardabweichung uc:	[Vol%]	0,08	0,08	0,08				
- Abgasreinigung vorhanden ?		nein	nein	nein				

Parameter Messgerät NOx als NO2 :

- Eingestellter Messbereich 0 bis	[mg/m³ *]	512,5	512,5	512,5	
- Bestimmungsgrenze:	[mg/m³ *]	2,6	2,6	2,6	
Auswertung NOx als NO2 :					
Messwert	[mg/m³ *]	64,1	67,2	66,9	

Messergebnisse Einzelmessungen NOx als NO2:

- Massenkonzentrationen	[mg/m³ *]	64,1	67,2	66,9	
Standardabweichung uc:	[mg/m³ *]	3,56	3,57	3,57	
- Massenkonz. bez. auf 3 Vol% O2	[mg/m³ *]	113,0	119,4	119,5	
Standardabweichung uc:	[mg/m³ *]	6,34	6,41	6,44	
- Massenstrom:	[kg/h]	0,009	0,010	0,010	
Standardabweichung uc:	[kg/h]	0,000	0,000	0,000	

Messergebnisse Zusammenfassung NOx als NO2:

Messung 1 bis 3		MW	MIN	MAX	Be
- Massenkonzentrationen	[mg/m³ *]	66,1	64,1	67,2	M
Standardabweichung uc:	[mg/m³ *]	3,57	3,56	3,57	MI
- Massenkonz. bez. auf 3 Vol% O2	[mg/m³ *]	117,3	113,0	119,5	M
Standardabweichung uc:	[mg/m³ *]	6,40	6,34	6,44	n.
- Massenstrom:	[kg/h]	0,010	0,009	0,010	Di
Standardabweichung uc:	[kg/h]	0,000	0,000	0,000	ga
*) Normzustand (trocken) (273 K: 1013 hPa.)		**) Normzusta	nd (feucht) (2	73 K: 1013 hPa	1

Bemerkungen	
MW = Mittelwert	
MIN = Minimalwert	
MAX = Maximalwert	
n.n. = kleiner Bestimmungsgren	ize
Die Mittelwertberechnung erfolg ganzer Bestimmungsgrenze	t mit

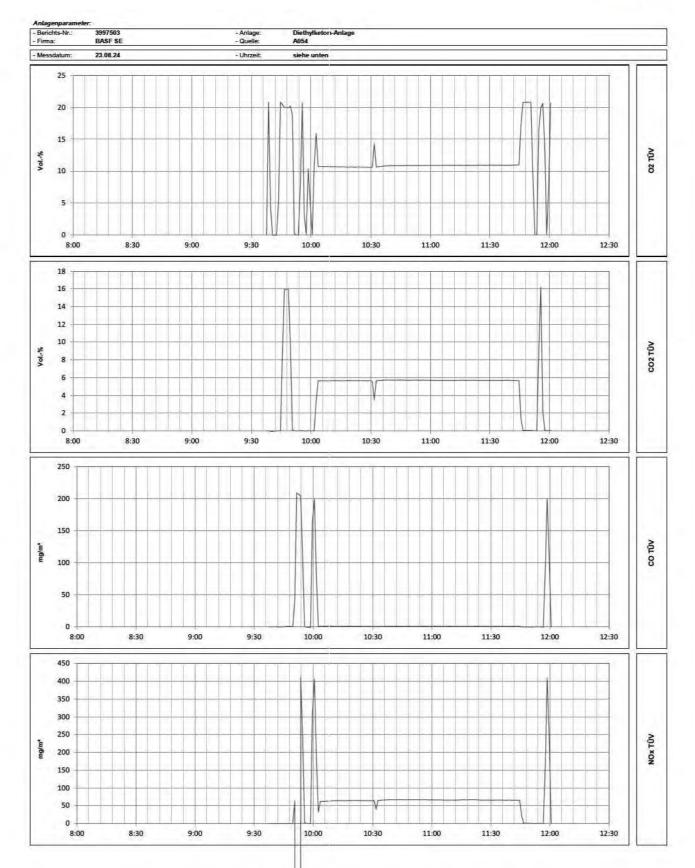
7.2 Grafische Darstellung der zeitlichen Verläufe kontinuierlich gemessener Komponenten

- Berichts-Nr.:	3997503	- Anlage:	Diethylketon-Anlage
- Firma:	BASF SE	- Quelle:	A054

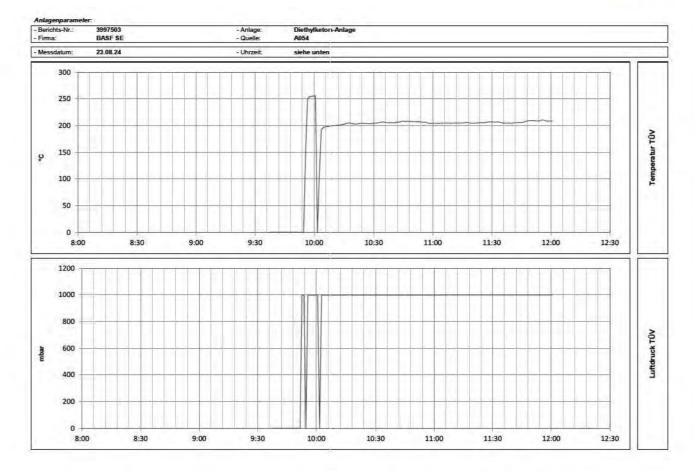
Prüfgase für die Justierung

Prüfgas	Einheit	Konz.	Hersteller	Zertifikats- Nr	Herstellungs- datum	Stabilität [Monate]
02	Vol%	19,9	Linde	2702841	16.01.2024	36
CO2	Vol%	16	Linde	2702841	16.01.2024	36
CO	ppm	163	Linde	4665602	17.01.2023	36
NOx	ppm	203	Linde	4665602	17.01.2023	36

Anhang: Mess-und Rechenwerte


- Berichts-Nr.:	3997503	- Anlage:	Diethylketon-Anlage
- Firma:	BASF SE	- Quelle:	A054

- Messdatum: 23.08.24 - Uhrzeit: siehe unten


Dokumentation Driftberechnung

Messkomponente	02	CO2	CO	NOx
Einheit	[Vol%]	[Vol%]	[mg/m³]	[mg/m³]
Messbereichsende	25,00	20,00	250,0	512,5
Nullpunkt Soll	0,00	0,00	0,00	0,00
Prüfwert Soll	19,90	16,00	203,8	416,2
Uhrzeit vor	09:40	09:40	09:40	09:40
Nullpunkt IST vor Messung	-0,01	0,00	0,10	0,00
Prüfwert IST vor Messung	19,91	16,01	203,9	413,1
Uhrzeit nach	11:53	11:53	11:53	11:53
Nullpunkt IST nach Messung	0,04	0,02	-0,10	0,00
Prüfwert IST nach Messung	19,89	16,20	201,1	409,6
Drift Dauer Minuten	133	133	133	133
Drift Endpunkt %	-0,35	1,06	-1,25	-0,84
Drift Nullpunkt %	0,25	0,12	-0,10	0,00
Drift Korrektur erfolgt	ja	ja	ja	ja

7.3 Hausverfahren

nicht relevant

TÜV SÜD Industrie Service GmbH

Messstelle nach § 29b BlmSchG Westendstraße 199 80686 München Standort Mannheim

Bericht

Anlage:

über die Durchführung von Emissionsmessungen

Sokalan-Fabrik Nord, Bau F 515,

Auslass A 001

Betreiber: BASF SE

Carl-Bosch-Straße 38 67056 Ludwigshafen

Standort: BASF SE

Carl-Bosch-Straße 38 67056 Ludwigshafen

Auftragsdatum: 15.12.2023

Bestellzeichen: 1089329203

Messtermin: 22.02.2024

Berichtsnummer: 3917201_Sokalan-Fabrik_Nord_EMI_2024

Aufgabenstellung: Messung nach § 28 BlmSchG (erstmalige und wiederkehrende Messungen bei ge-

nehmigungsbedürftigen Anlagen)

Befristete Bekanntgabe: 18.02.2026

gabe des Dokumentes und die Verwendung zu Werbezwecken bedürfen der schriftlichen Genehmigung der TÜV SÜD Industrie Service GmbH.

Die auszugsweise Wieder-

Datum: 22.10.2024

Unsere Zeichen:

IS-US1-MAN/No

aus 40 Seiten.

Seite 1 von 40

Dieses Dokument besteht

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände.

Die Komponente N,N-Bis(3-aminopropyl)ethylendiamin liegt außerhalb des Akkreditierungsbereichs der DIN EN ISO/IEC 17025.

USt-IdNr. DE129484218 Informationen gemäß § 2 Abs. 1 DL-InfoV unter tuvsud.com/impressum

Seite 2 von 40 Zeichen/Erstelldatum: IS-US1-MAN/No / 22.10.2024 Berichtsnummer: 3917201_Sokalan-Fabrik_Nord_EMI_2024.docx

Zusammenfassung

Quelle	Messkomponente	Einheit	Maximaler Messwert minus Up	Maximaler Messwert plus Up	Emissions- begrenzung	Betriebs- zustand
A001	NH3	kg/h	n.n.	n.n.	0,15	siehe 5.1
A001	Feststoffe (Staub)	kg/h	0,0002	0,0005	0,20	siehe 5.1
A001	2-Hexanon	kg/h	n.n.	n.n.	0,10	siehe 5.1
A001	N,NBis(3- aminopropyl)ethylendiamin	kg/h	n.n.	n.n.	0,10	siehe 5.1
A001	Acetaldehyd	kg/h	0,001	0,001	0,10	siehe 5.1
A001	Formaldehyd (HCHO)	kg/h	n.n.	n.n.	0,10	siehe 5.1
A001	Crotonaldehyd	kg/h	n.n.	n.n.	0,10	siehe 5.1
A001	Gesamt-C (FID)	kg/h	0,003	0,003	0,50	siehe 5.1
A001	SOx als SO2	kg/h	0,02	0,02	1,8	siehe 5.1

n.n. = kleiner Bestimmungsgrenze

Die angegebenen Messwerte sind auf die Bedingungen der Ernissionsbegrenzung bezogen.

Inhaltsverzeichnis

1	Formulierung der Messaufgabe	3
2	Beschreibung der Anlage und der gehandhabten Stoffe	7
3	Beschreibung der Probenahmestelle	9
4	Mess- und Analyseverfahren, Geräte	12
5	Betriebszustand der Anlage während der Messungen	20
6	Zusammenstellung der Messergebnisse	21
7	Anhang	25

1 Formulierung der Messaufgabe

1.1 Auftraggeber

Firma: BASF SE

Carl-Bosch-Straße 38 67056 Ludwigshafen

Ansprechpartner:

Telefon:

Anschrift:

1.2 Betreiber

Firma: BASF SE

Carl-Bosch-Straße 38 67056 Ludwigshafen

Ansprechpartner:

Telefon:

Anschrift:

Arbeitsstätten-Nr.:

1.3 Standort

Anschrift: BASF SE

Carl-Bosch-Straße 38 67056 Ludwigshafen

Gebäude: F 515 Emittent: A001

1.4 Anlage

Anlage: Ziffer 4.1.11 G, E der 4. BlmSchV

1.5 Datum der Messung

Zeitpunkt/Zeitraum der Messung: 22.02.2024

Datum der letzten Messung: Erstmessung gemäß Bescheid vom

27.06.2023

Datum der nächsten Messung: 2026

1.6 Anlass der Messung

wiederkehrende Emissionsmessung entsprechend den Vorgaben des Genehmigungsbescheides

1.7 Aufgabenstellung

Zur Erfüllung der Auflagen des Genehmigungsbescheides, beauftragte die oben genannte Firma die gemäß §29b Bundes-Immissionsschutzgesetz (BImSchG) benannte Messstelle "TÜV SÜD Industrie Service GmbH" mit der Durchführung entsprechender Emissionsuntersuchungen.

Bescheid/Auflagen		
Ausstellende Behörde	Stadt Ludwigshafen	
Aktenzeichen	4-154H.St499.07	
Ausstelldatum	27.06.2023	

Es sind folgende Grenzwerte festgelegt:

Schadstoff	Grenzwert nach Bescheid 4-154H.St499.07
organische Stoffe, als Gesamtkohlenstoff (Gesamt-C)	0,50 kg/h
Organische Stoffe der Klasse I nach Ziffer 5.2.5 TA Luft	0,10 kg/h
Ammoniak (NH₃)	0,15 kg/h
Schwefeloxide (als SO ₂)	1,8 kg/h
Gesamtstaub	0,20 kg/h
Bezugsgrößen	Bezugswert
Sauerstoff	-

Die Emissionsgrenzwerte sind als Masse der emittierten Stoffe, bezogen auf das Volumen des Abgases im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchtegehaltes an Wasserdampf zu verstehen. Die Emissionsgrenzwerte beziehen sich auf den oben angegebenen Volumengehalt an Sauerstoff im Abgas (Bezugssauerstoffgehalt).

Die in Ziffer 1.8 dieses Berichts aufgeführten, messtechnisch betrachteten Komponenten werden wie folgt den Ziffern und Klassen nach TA Luft zugeordnet:

Ziffer 5.2.4, Klasse III	
Ziffer 5.2.5	
Ziffer 5.2.5, Klasse I	
nin	

1.8 Messobjekte

Messkomponente Schadstoffe	Anzahl der Einzelmessungen Art der Erfassung
organische Stoffe angegeben als Gesamt-Kohlenstoff (FID-Verfah- ren)	kontinuierlich registrierend
Ammoniak	4 à 30 Min.
Schwefeloxide, angegeben als SO ₂	4 à 30 Min.
Formaldehyd	4 à 30 Min.
Acetaldehyd	4 à 30 Min.
Crotonaldehyd	4 à 30 Min.
N,NBis(3-aminopropyl)ethylendiamin	4 à 30 Min.
N-(2-Aminoethyl)-1,3.propandiamin*)	4 à 30 Min.*)
2-Hexanon	4 à 30 Min.
Partikel (Gesamtstaub)	4 à 30 Min.

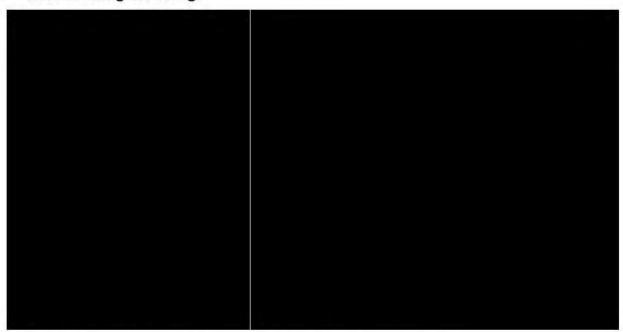
^{*)} Analyse nicht möglich, da kein Standard verfügbar war

Messkomponente Bezugsgrößen und Randparameter	Anzahl der Einzelmessungen Art der Erfassung
Abgasgeschwindigkeit	diskontinuierlich zu jeder Staubmessung
Abgastemperatur	diskontinuierlich zu jeder Staubmessung
Druck im Abgaskanal	diskontinuierlich zu jeder Staubmessung
Feuchtegehalt	kapazitiv

Orts		sbesichtigung vor Messdurchführung
		Ortsbesichtigung durchgeführt am:
		keine Ortsbesichtigung durchgeführt, da mit den vorherigen Messungen an dieser Anlage schon befasst.
)	Me	ssplanabstimmung
	\boxtimes	mit dem Betreiber
		mit der zuständigen Aufsichtsbehörde
		keine Messplanabstimmung durchgeführt
1	An	der Messung beteiligte Personen
	43	
2		teiligung weiterer Institute
2	Che TÜ' Rid	teiligung weiterer Institute emischen Labor V SÜD Industrie Service GmbH lerstraße 65 nchen

2 Beschreibung der Anlage und der gehandhabten Stoffe

2.1 Bezeichnung der Anlage


Zuordnung zur 4. BlmSchV: Nummer 4.1.11 G, E

Anlagen zur Herstellung von Stoffen oder Stoffgruppen durch chemische, biochemische oder biologische Umwandlung in industriellem Umfang, [...] zur Herstellung von Tensiden

Hier:

Anlage zur Herstellung von Textil- und Gerberei-Hilfsmitteln (Sokalan-Fabrik Nord)

2.2 Beschreibung der Anlage

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Kamin		
Höhe über Grund	ca. 25 m 32 458533 / 5483729	
UTM Koordinaten		
Bauausführung	Kunststoff	

2.4 Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe

2.5 Betriebszeiten nach Betreiberangaben

2.5.1 Gesamtbetriebszeit

2.5.2 Emissionszeit nach Betreiberangaben

entspricht der Gesamtbetriebszeit (abzüglich Stillstands- und Revisionszeiten)

2.6 Einrichtung zur Erfassung und Minderung der Emissionen

2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Art der Emissionserfassung

Die Abgase werden im geschlossenen Abgaskanal in den Abgaskamin geleitet. Apparateabsaugungen, Absaughauben, Raumabsaugungen, Rohrleitungssyste¬me, Vakuumpumpen, Abgaswäscher, Kamin.

2.6.1.2 Ventilatorkenndaten

Nicht installiert

2.6.2 Einrichtung zur Verminderung der Emissionen

Nassabscheider		
Betriebseinheit	Abgaswäscher F1008	
Arbeitsprinzip	Strahlwäscher	
Waschflüssigkeitsführung	Gleichstrom	
Durchmesser	DN 500	
Art der Waschflüssigkeit	Wasser	
Zusätze der Waschflüssigkeit	H₂SO₄	
Durchfluss	5.000 m³/h	
Kreislaufpumpen	50 m³/h	
Rhythmus der Waschflüssigkeitserneu- erung	kontinuierlich	
Nennleistung der Pumpenmotoren	12,5 kW	
Letzte Wartung	nach Bedarf	

2.6.3 Einrichtung zur Verdünnung des Abgases

nicht zutreffend

3 Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Quelle	A001
Lage	im Freien
Höhe über Grund	ca. 22 m
Verlauf des Abgaskanals	waagerecht
Abgasrohr-Geometrie / Durchmesser	rund / 0,30 m
Hydraulischer Durchmesser	0,30 m
Messquerschnitt	0,0707 m²
freie Einlaufstrecke	1,5 m
freie Auslaufstrecke	2,4 m
≥ 5 D _h Ein- und 2 D _h Auslauf (5 D _h vor Mündung)	ja

3.1.2 Arbeitsfläche und Messbühne

Quelle	A001
dauerhafte Messbühne	ja
Tragfähigkeit i.O.	ja, war zum Messzeitpunkt gegeben
ausreichende Arbeitsfläche und Arbeitshöhe	ja
ausreichender Traversierraum zur Er- reichung aller Messpunkte im Mess- querschnitt	ja
keine Einflüsse durch Umgebungsbedingungen auf Messergebnisse?	ja

3.1.3 Messöffnungen

Quelle	A001	
Anzahl	2	
Größe	3 cm	
Ausführung	Bohrung	
Lage am Kanal		

3.1.4 Strömungsbedingungen im Messquerschnitt

Quelle	A001
Winkel Gasstrom zu Mittelachse Abgaskanal < 15 °	ja
keine lokale negative Strömung?	ja
Verhältnis höchste/niedrigste örtliche Geschwindigkeit im Messquerschnitt < 3 : 1	ja
Mindestgeschwindigkeit in Abhängig- keit vom verwendeten Messverfahren	ja 0,3 m/s

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Quelle	A001
Messbedingungen entsprechend DIN EN 15259 erfüllt?	ja
ergriffene Maßnahmen	keine
zu erwartende Auswirkungen auf das Messergebnis	keine
Empfehlungen und Hinweise zur Verbesserung der Messbedingungen	keine

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte / Messachse	
Geschwindigkeit	1	1	mittig
gesC., Staub, organische Komponenten, NH ₃ , SO ₂	1	1	mittig

3.2.2 Homogenitätsprüfung

Quelle	Auslass A001		
durchgeführt (siehe Kap. 7.1)	nein		
nicht durchgeführt, weil	 ☑ Fläche Messquerschnitt < 0,1 m² ☑ Netzmessung ☑ liegt vor Datum der Homogenitätsprüfung: Berichts-Nr.: Prüfinstitut: 		
Ergebnisse der Homogenitätsprüfung	 ☐ Messung beliebiger Punkt ☐ Messung repräsentativer Punkt Achse: Eintauchtiefe: ☐ Netzmessung 		

3.2.3 Komponentenspezifische Darstellung

Nicht Bestandteil der Prüfung

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messquerschnitt

Messpunkte Lage im Netz gemäß DIN EN 15259

Messfühler Flügelrad-Anemometer

Messeinrichtung Digitalanzeigeinstrument Typ Almemo 2690 mit

digitalem -Flügelradanemometer FVAD 15

Hersteller Ahlborn, Holzkirchen

Messbereich 0 bis 20 m/s
Bestimmungsgrenze 0,3 m/s
kontinuierliche Ermittlung nein

4.1.2 Statischer Druck im Abgaskamin

Richtlinie DIN EN 16911-1

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druck-

messmodul FDA

Hersteller Ahlborn, Holzkirchen Messbereich -1250 bis 1250 Pa

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung kalibriertes Differenzdruckmessgerät Typ Al-

memo 2690 mit piezoelektrischem Druckmess-

modul FDA

Hersteller Ahlborn, Holzkirchen

4.1.4 Abgastemperatur

Richtlinie VDI/VDE 3511 Blatt 2

Messeinrichtung Digitalanzeigeinstrument Typ Almemo 2690 mit

T-Modul FT FZA 9020-FS (NiCr-Ni)

Hersteller Ahlborn, Holzkirchen

Messfühler Thermoelement NiCr-Ni (Typ K)

Messbereich -200 bis +1370°C

kontinuierliche Ermittlung nein

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Ermittlungsmethode thermoelektrisch / kapazitiver Feuchtefühler Messeinrichtung

Digitalanzeigeinstrument Typ Almemo 2690 mit

T-Modul FT FZA 9020-FS (NiCr-Ni)

Messgerät

Ahlborn, Holzkirchen Hersteller

Messbereich 0 bis 90 % relative Feuchte

Hinweis Die Abgasfeuchte liegt außerhalb des Anwen-

dungsbereichs von 4 - 40 Vol.-% der DIN EN

14790

4.1.6 Abgasdichte

> Bestimmung berechnet unter Berücksichtigung der Abgas-

> > zusammensetzung, des Luftdrucks, der Abgastemperatur und der Druckverhältnisse im Kanal

4.1.7 Abgasverdünnung

entfällt

4.1.8 Volumenstrom

> Richtlinie DIN EN 16911-1

Ermittlungsmethode Bestimmung der Abgasgeschwindigkeit über

den Messguerschnitt / Berechnung aus dem

Brennstoffmassenstrom

Mittlere Abgasgeschwindigkeit

Messverfahren siehe 4.1.1 Messeinrichtung siehe 4.1.1

Querschnittsfläche

Messverfahren Messung mit Messstab

Messeinrichtung Messstab

4.2 Automatische Messverfahren

4.2.1 Messkomponente Gesamt-Kohlenstoff

4.2.1.1 Messverfahren

> Gesamt-C Flammen-Ionisations-Detektor (FID)

> > nach DIN EN 12619

4.2.1.2 Analysator

> Hersteller Bernath Atomic Bernath Atomic 3006 Typ

4.2.1.3 Eingestellter Messbereich

> Gesamt-C (Propan) 0 bis 100 ppm

> > (1 ppm entspr. 1,608 mg/m³ Ges.-C)

4 bis 20 mA

4.2.1.4 Gerätetyp eignungsgeprüft

GMBI 8/1996

4.2.1.5 Probenahme und Probenaufbereitung

Entnahmesonde Gothesonde aus Titan, Länge 1,0 m, elektrisch

beheizt auf 160°C

Staubfilter Sintermetallfilter nach Sonde, beheizt auf

160°C

Probegasleitung Länge 5,0 m, Material: PTFE, beheizt auf 180-

200°C

Messgasaufbereitung

Messgaskühler entfällt Konverter entfällt

4.2.1.6 Überprüfen von Null- und Referenzpunkt mit Prüfgasen

Nullgas synthetische Luft

Prüfgase

Gesamt-C (Propan) 79,60 ppm, Rest syth. Luft

Hersteller Linde Zertifikat gültig bis Juli 2024

4.2.1.7 Einstellzeit des gesamten Messaufbaus

Einstellzeit 31 Sekunden

4.2.1.8 Messwerterfassungssystem

Messwertregistrierung

und -auswertung

Fabrikat/Typ Datenerfassungssystem "Trendows",

Trendbus-Module EA8-V/A

durch elektronische Datenerfassung

Hersteller E. Kirsten

Auswertung Tabellenkalkulationsprogramm

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

4.3.1 Messkomponente Ammoniak und gasförmige anorganische Ammoniumverbindungen

4.3.1.1 Messverfahren

Richtlinie NH₃: DIN EN ISO 21877

Absorption in verdünnter Schwefelsäure mit io-

nenchromatografischer Analyse

4.3.1.2 Probenahme und Probenaufbereitung

Entnahmesonde Gothesonde aus Titan, Länge 1,0 m, elektrisch

beheizt auf 160°C

Partikelfilter Outstack Planfilter nach VDI 2066, elektrisch

beheizt

Absorptionssystem zwei Frittenwaschflaschen in Reihe

Waschflasche 1 und 2 werden i.d.R. separat

analysiert

Absorptionsmittel 0,1 n H₂SO₄-Lösung

Sorptionsmittelmenge ca. 80 ml Absaugeinrichtung Desaga GS 312

Abstand Sonde - Absorptionssystem Sondenlänge + ca. 0,1 m

Zeitraum zwischen Probenahme gekühlter Probentransport in PE-Fläschchen.

und Analyse schnellstmögliche Analyse

4.3.1.3 Analytische Bestimmung

Verfahren Ionenchromatografie

Probenvorbereitung außer ggf. Verdünnung nicht erforderlich

Gerät ICS 1100 Ion Chromatograph

Hersteller Dionex GmbH, Idstein

Trennsäule IC-Säule Ionpac CG 16 / CS 16; 5 x 250 mm

Detektor Leitfähigkeitsdetektor

Kalibrierung
Hinweis
externer Standard, Mehrpunktkalibrierung
Die analytische Bestimmung wird im Chemi-

schen Labor der TÜV SÜD Industrie Service GmbH am Standort München. Ridlerstraße

durchgeführt.

4.3.2 Messkomponente gasförmige organische Verbindungen (GC-MS-Bestimmung)

Hexanon, N,N--Bis(3-aminopropyl)ethylendiamin

4.3.2.1 Messverfahren

Richtlinie DIN CEN/TS 13649

Adsorption an Aktivkohle, gaschromatografische Bestimmung der Einzelkomponenten mit

Kopplung eines Massenspektrometers

Hinweis Die Komponente N,N--Bis(3-aminopropyl)ethyl-

endiamin liegt außerhalb des Akkreditierungs-

bereichs der DIN EN ISO/IEC 17025.

4.3.2.2 Probenahme und Probenaufbereitung

Entnahmesonde Sonde aus Titan, Länge 1,0 m, beheizt durch

Abgas

Partikelfilter entfällt

Absorptionssystem Aktivkohle-Röhrchen Typ B/G; Drägerwerk,

Lübeck

Silicagel-Röhrchen Typ B/G, Drägerwerk,

Lübeck

Absorptionsmittel Aktivkohle und Silicagel
Sorptionsmittelmenge 950 mg pro Röhrchen
Absaugeinrichtung Desaga GS 312

Abstand Sonde - Absorptionssystem Sondenlänge + ca. 0,1 m

Zeitraum zwischen Probenahme < 7 Tage

und Analyse lichtgeschützte, gekühlte Lagerung <25°C

4.3.2.3 Analytische Bestimmung

Verfahren GC-Analyse

Probenvorbereitung Desorption von der Aktivkohle

mit CS₂ / n-Propanol-Gemisch

Gerät GC/MS 6890/5973 bzw. 7890/5975

Seite 16 von 40 Zeichen/Erstelldatum: IS-US1-MAN/No / 22.10.2024 Berichtsnummer: 3917201_Sokalan-Fabrik_Nord_EMI_2024.docx

Hersteller Trennsäule

Detektor Kalibrierung Hinweis Agilent
HP 5, Länge 25 m, Durchmesser 0,25 mm,
Schichtstärke 0,25 µm
Massenspektrometer Agilent MSD 5975
externer Standard, Mehrpunktkalibrierung
Die analytische Bestimmung wird im Chemischen Labor der TÜV SÜD Industrie Service
GmbH am Standort München, Ridlerstraße
durchgeführt.

4.3.3 Messkomponente Formaldehyd, Acetaldehyd, Crotonaldehyd

4.3.3.1 Messverfahren

Richtlinie VDI 3862 Blatt 2

Absorption in DNPH-Lösung und chromatogra-

fische Analyse

4.3.3.2 Probenahme und Probenaufbereitung

Entnahmesonde Gothesonde aus Titan, Länge 1,0 m, elektrisch

beheizt auf 160°C

Partikelfilter Outstack Planfilter nach VDI 2066, elektrisch

beheizt

Absorptionssystem zwei Frittenwaschflaschen (gekühlt) in Reihe Absorptionsmittel DNPH-Lösung (65 mg 2,4-Dinitrophenyl-hydra-

zin in 100 ml Acetonitril)

Sorptionsmittelmenge ca. 80 ml
Absaugeinrichtung Desaga GS 312

Abstand Sonde - Absorptionssystem Sondenlänge + ca. 0,1 m

Zeitraum zwischen Probenahme Probentransport in PE-Fläschchen.

und Analyse Zeit zwischen Probenahme und Analyse < 14

Tage; Lagertemperatur < 4°C

4.3.3.3 Analytische Bestimmung

Verfahren HPLC (High Pressure Liquid Chromatography)

Gerät HPLC 1200 Hersteller Agilent

Trennsäule RP 18, 125 x 4 mm
Detektor DAD-Detektor

Kalibrierung externer Standard, Mehrpunktkalibrierung
Hinweis Die analytische Bestimmung wird im Chemi-

schen Labor der TÜV SÜD Industrie Service GmbH am Standort München, Ridlerstraße

durchgeführt.

4.3.4 Messkomponente Schwefeloxide

4.3.4.1 Messverfahren

Richtlinie SOx: DIN EN 14791

Absorption in wässriger H₂O₂-Lösung und io-

nenchromatografische Analyse

4.3.4.2 Probenahme und Probenaufbereitung

Entnahmesonde Gothesonde aus Titan, Länge 1,0 m, elektrisch

beheizt auf 160°C

Partikelfilter Outstack Planfilter nach VDI 2066, elektrisch

beheizt

Absorptionssystem zwei Frittenwaschflaschen in Reihe

Absorptionsmittel 0,3 % H₂O₂-Lösung in vollentsalztem Wasser

Sorptionsmittelmenge ca. 80 ml Absaugeinrichtung Desaga GS 312

Abstand Sonde - Absorptionssystem Sondenlänge + ca. 0,1 m

Zeitraum zwischen Probenahme

und Analyse

Probentransport in PE-Fläschchen.

Zeit zwischen Probenahme und Analyse ist für

diese Komponente nicht qualitätsrelevant

4.3.4.3 Analytische Bestimmung

Verfahren

Ionenchromatografie

Probenvorbereitung

außer ggf. Verdünnung nicht erforderlich

DX 1600 Ion Chromatograph Gerät Hersteller Dionex GmbH, Idstein

Trennsäule IC-Säule AS22 fast, 150 x 4 mm

Leitfähigkeitsdetektor Detektor

Kalibrierung Hinweis

externer Standard, Mehrpunktkalibrierung Die analytische Bestimmung wird im Chemi-

schen Labor der TÜV SÜD Industrie Service GmbH am Standort München, Ridlerstraße

durchgeführt.

4.4 Messverfahren für partikelförmige Emissionen

4.4.1 Messkomponente Gesamtstaub

4.4.1.1 Messverfahren

> DIN EN 13284-1 bzw. VDI 2066 Blatt 1 Richtlinie

> > Gravimetrie der auf Planfiltern abgeschiedenen

Staubmasse

4.4.1.2 Probenahme und Probenaufbereitung

> Filtergerät Plan-Filterkopfgerät,

> > elektrisch beheizt auf ca. 160°C

Anordnung außenliegend am Abgaskanal

Entnahmesonde Unmittelbar auf dem Krümmer angeschraubt

ja

Beheizung durch das Messgas Wirkdurchmesser siehe Anhang

160 °C Filtrationstemperatur

Krümmer zwischen Entnahmesonde

und Filtergehäuse

Material Sonde / Filterhalter

Titan

Munktell MK 360 Quartz Microfibre Filter Stora Filter Products, Schweden

Abscheidegrad > 99,9%

Porendurchmesser 0,2µm Durchmesser 45 mm

Absaugrohr Material: Titan

Länge 1,0 m

elektrisch beheizt auf ca. 160°C

Absorptionssystem entfällt, da nur Gesamtstaub bestimmt wird

für filtergängige Stoffe

Absorptionsmittel entfällt Sorptionsmittelmenge entfällt

Absaugeeinrichtung Vakuumpumpe mit vorgeschaltetem Massen-

flussregler und -zähler

4.4.1.3 Behandlung der Filter und der Ablagerungen

Trocknung der Filter vor Beaufschlagung: 180°C, > 1 h

Abkühlung im Exsiccator über Silicagel nach Beaufschlagung: 160°C, > 1 h

Abkühlung im Exsiccator über Silicagel/CaCl₂

Rückgewinnung von Ablagerungen

vor Filter

Spülung der Düse, des Krümmer und des Absaugrohrs. Abdampfrückstand wurde auf Filter-

gewicht aufaddiert

Wägung der Filter

Waage Sartorius ME 235-P - OCE

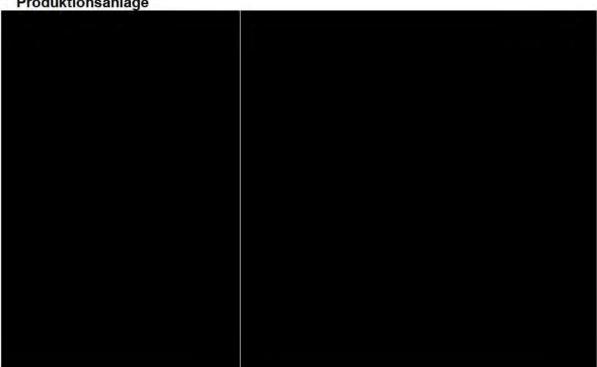
4.4.1.4 Aufbereitung und Analyse der Filter und der Absorptionslösungen

Messfilter entfällt Absorptionslösungen entfällt

4.5 Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u. ä.)

nicht Bestandteil der Prüfung

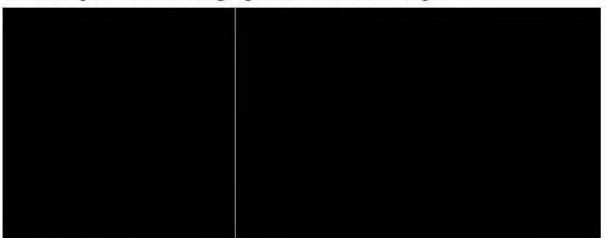
4.6 Geruchsemissionen


nicht Bestandteil der Prüfung

5 Betriebszustand der Anlage während der Messungen

Die Daten zur Beschreibung des Betriebszustandes wurden vom Betreiber zur Verfügung gestellt und auf Plausibilität geprüft. Während der Messung wurden diese Daten stichprobenartig kontrolliert.

5.1 Produktionsanlage


5.2 Abgasreinigungsanlagen

Quelle	Wäscher F 1008		
Absorbens	Wasser		
Zusätze	H ₂ SO ₄		
emissionsbeeinflussende Parameter	pH-Wert		
Abweichungen von genehmigter oder bestimmungsgemäßer Betriebsweise	nicht erkennbar		
besondere Vorkommnisse	keine		

Zusammenstellung der Messergebnisse

6.1 Bewertung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Alle Einzelergebnisse der gemessenen Stoffkomponenten und die für die Ermittlung erforderlichen Bezugsgrößen sind in Tabellenform mit der jeweiligen Messzeit im Anhang Mess- und Rechenwerte aufgeführt.

Massenkonzentration

Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwer	
NH3	mgi/m³ N,tr	4 à 30 min	n.n. n.n.		n.n.	
Feststoffe (Staub)	mgi/m³ N,tr	4 à 30 min	0,74 0,50		1,07	
2-Hexanon	mgi/m³ N,tr	4 à 30 min	1,17 n.n.		1,68	
N,NBis(3- aminopropyl)ethylendiamin	mgi/m³ N,tr	4 à 30 min	n.n. n.n.		n.n.	
Acetaldehyd	mgı/m³ N,tr	4 à 30 min	1,65 0,04		3,80	
Formaldehyd (HCHO)	mgi/m³ N,tr	4 à 30 min	0,04 n.n.		0,04	
Crotonaldehyd	mgi/m³ N,tr	4 à 30 min	n.n. n.n.		n.n.	
Gesamt-C (FID)	mgi/m³ N,tr	4 à 30 min	7,8 6,0		8,9	
SOx als SO2	mgi/m³ N,tr	4 à 30 min	39,8	n.n.	78,4	
	NH3 Feststoffe (Staub) 2-Hexanon N,NBis(3- aminopropyl)ethylendiamin Acetaldehyd Formaldehyd (HCHO) Crotonaldehyd Gesamt-C (FID)	NH3 mg/m³ N,tr Feststoffe (Staub) mg/m³ N,tr 2-Hexanon mg/m³ N,tr N,NBis(3- aminopropyl)ethylendiamin mg/m³ N,tr Acetaldehyd mg/m³ N,tr Formaldehyd (HCHO) mg/m³ N,tr Crotonaldehyd mg/m³ N,tr Gesamt-C (FID) mg/m³ N,tr	Messkomponente Rinheit Einzelmessungen NH3 mg/m³ N,tr 4 à 30 min Feststoffe (Staub) 2-Hexanon N,N-Bis(3-aminopropyl)ethylendiamin Acetaldehyd mg/m³ N,tr 4 à 30 min mg/m³ N,tr 4 à 30 min Mg/m³ N,tr 4 à 30 min Formaldehyd (HCHO) mg/m³ N,tr 4 à 30 min Crotonaldehyd mg/m³ N,tr 4 à 30 min Gesamt-C (FID) mg/m³ N,tr 4 à 30 min	MesskomponenteEinheitEinzelmessungenMittelwertNH3mgl/m³ N,tr4 à 30 minn.n.Feststoffe (Staub)mgl/m³ N,tr4 à 30 min0,742-Hexanonmgl/m³ N,tr4 à 30 min1,17N,N-Bis(3-aminopropyl)ethylendiaminmgl/m³ N,tr4 à 30 minn.n.Acetaldehydmgl/m³ N,tr4 à 30 min1,65Formaldehyd (HCHO)mgl/m³ N,tr4 à 30 min0,04Crotonaldehydmgl/m³ N,tr4 à 30 minn.n.Gesamt-C (FID)mgl/m³ N,tr4 à 30 min7,8	Messkomponente Einheit Einzelmessungen Mittelwert Minimalwert NH3 mg/m³ N,tr 4 à 30 min n.n. n.n. Feststoffe (Staub) mg/m³ N,tr 4 à 30 min 0,74 0,50 2-Hexanon mg/m³ N,tr 4 à 30 min 1,17 n.n. N,N-Bis(3-aminopropyl)ethylendiamin mg/m³ N,tr 4 à 30 min n.n. n.n. Acetaldehyd mg/m³ N,tr 4 à 30 min 1,65 0,04 Formaldehyd (HCHO) mg/m³ N,tr 4 à 30 min 0,04 n.n. Crotonaldehyd mg/m³ N,tr 4 à 30 min n.n. n.n. Gesamt-C (FID) mg/m³ N,tr 4 à 30 min 7,8 6,0	

der Emissionsbegrenzung bezogen.

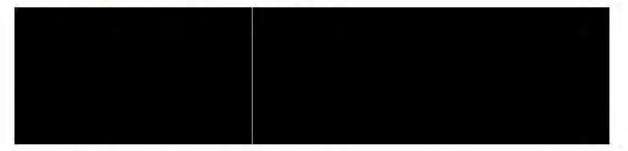
Massenströme

Quelle	Messkomponente	Einheit	Anzahl der Einzel- messungen	Mittelwert	Minimalwert	Maximalwert	
A001	NH3	[kg/h]	4 à 30 min	n.n. n.n.		n.n.	
A001	Feststoffe (Staub)	[kg/h]	4 à 30 min	0,00026 0,00019		0,00036	
A001	2-Hexanon	[kg/h]	4 à 30 min	n.n. n.n.		n.n.	
A001	N,N-Bis(3- aminopropyl)ethylendiamin	[kg/h]	4 à 30 min	n.n. n.n.		n.n.	
A001	Acetaldehyd	[kg/h]	4 à 30 min	0,000 n.n.		0,001	
A001	Formaldehyd (HCHO)	[kg/h]	4 à 30 min	n.n. n.n.		n.n.	
A001	Crotonaldehyd	[kg/h]	4 à 30 min	n.n. n.n.		n.n.	
A001	Gesamt-C (FID)	[kg/h]	4 à 30 min	0,002 0,001		0,003	
A001	SOx als SO2	[kg/h]	4 à 30 min	0,01	n.n.	0,02	

6.3 Messunsicherheiten

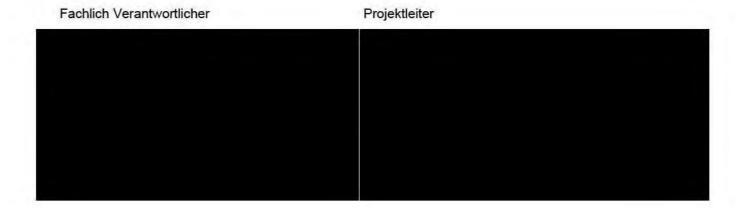
Quelle	Messkomponente	Einheit	y _{max}	Up	y _{max} - Up	y _{max} + Up	Bestimmungsmethode
A001	NH3	kg/h	n.n.	0,000 p = 0,95	n.n.	n.n.	x Doppelbestimmung Indirekter Ansatz
A001	Feststoffe (Staub)	kg/h	0,00036	0,00012 p = 0,95	0,0002	0,0005	x Doppelbestimmung Indirekter Ansatz
A001	2-Hexanon	kg/h	n.n.	0,000 p = 0,95	n.n.	n.n.	Doppelbestimmung x Indirekter Ansatz
A001	N,NBis(3- aminopropyl)ethylendiamin	kg/h	n.n.	0,000 p = 0,95	n.n.	n.n.	Doppelbestimmung x Indirekter Ansatz
A001	Acetaldehyd	kg/h	0,0010	0,0000 p = 0,95	0,001	0,001	Doppelbestimmung x Indirekter Ansatz
A001	Formaldehyd (HCHO)	kg/h	n.n.	0,000 p = 0,95	n.n.	n.n.	x Doppelbestimmung Indirekter Ansatz
A001	Crotonaldehyd	kg/h	n.n.	0,000 p = 0,95	n.n.	n.n.	Doppelbestimmung x Indirekter Ansatz
A001	Gesamt-C (FID)	kg/h	0,0030	0,0000 p = 0,95	0,003	0,003	x Doppelbestimmung Indirekter Ansatz
A001	SOx als SO2	kg/h	0,020	0,000 p = 0,95	0,02	0,02	x Doppelbestimmung Indirekter Ansatz

6.4 Diskussion der Ergebnisse


Die ermittelten Messergebnisse weisen im Hinblick auf

- · die Betriebsbedingungen (Einsatzstoffe im Messzeitraum, Temperaturen etc.),
- · die Betriebsweise,
- · die Abgasreinigung,
- · den Produktionsablauf,
- · die Art und Funktion der Abluftbehandlung und
- · die messtechnischen Abläufe

keine Unplausibilitäten auf.


Die Plausibilitätsprüfung erfolgte unter Berücksichtigung folgender Sachverhalte:

- · Vorwissen von vergleichbaren Anlagen
- · Vergleich von Messergebnissen miteinander

Prüflaboratorium Emissionsmessungen/Kalibrierungen

Messstelle nach § 29b BlmSchG - DAkkS Akkreditierung nach DIN EN ISO/IEC 17025

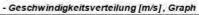
Seite 25 von 40 Zeichen/Erstelldatum: IS-US1-MAN/No / 22.10.2024 Berichtsnummer: 3917201_Sokalan-Fabrik_Nord_EMI_2024.docx

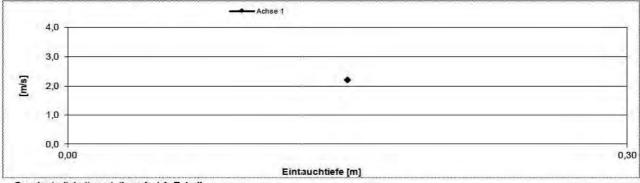
7 Anhang

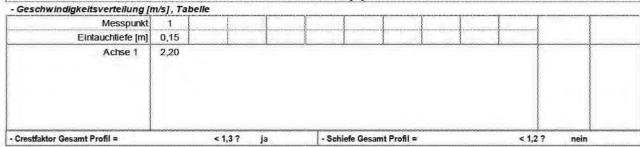
7.1 Prüfgase

- Berichts-Nr.:	3917201	- Anlage:	Sokalanfabrik
- Firma:	BASF	- Quelle:	A001

Prüfgase für die Justierung

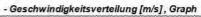

Prüfgas	Einheit	Konz.	Hersteller	Zertifikats- Nr	Herstellungs- datum	Stabilität [Monate]
C3H8	ppm	79,6	Linde	4887366	11.07.2023	12

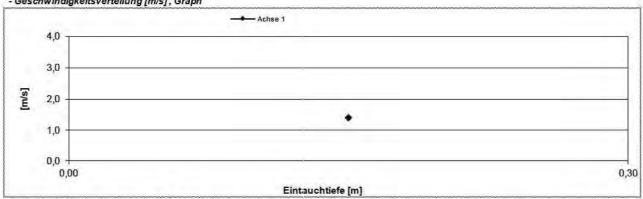



7.2 Mess- und Rechenwerte

- Bericht-Nr.	3917201	BASF_S	okalan_E	MI_20	23	- Anlage	Sokala	nfabrik			
- Firma	BASF SE					- Quelle	A001				
- Probenahmeparame	ter vor Ort										
- Messdatum - Bemerkung	22.02.202	24				- Uhrzeit	von	11:18	bis	11:48	Uhi
- Beschreibung Messo	uerschnitt										
Durchmesser		[m]	0,300	u _c =	0,006	gerade Einlaufstrecke gerade Auslaufstrecke		[m] [m]	1,50 2,40		
Fläche Messebene A		[m²]	0,0707	u _c =	0,002	Messöffnungen		2			
Hydraulischer Ø (HD)		[m]	0,300			Innenwand		glattwand	ig		
- Anforderung DIN 152	59 (6.2) / D	IN 13284-	1			- Empfehlung DIN 15	259				
Abgasströmung Winkel	zur Hauptac	hse < 15 °			ja	gerade Einlaufstrecke	(1,5 m)	>= 5 x HD (1,	5 m) ?		ja
keine lokale negative St	-				ja	gerade Auslaufstrecke	(2,4 m)	>= 2 x HD (0	,6 m)?		ja
U MAX / U MIN mit 1 : 1 i					ja	****					
Dynamischer Druck > 5 Wandabstand MP 1/0 >		20/11/7	2		ja ia	en constitue					
- Mittlere Abgasparam	····	7 J 76 V. W		••••••	Ja	- Mittlerer Volumenst	rom	·······	~~~~~~~		
Abgastemperatur	Tc	[°C]	18,0	u _c =	0.1	Betriebszustand	10111	[m³/h]	557		31
Abgastemperatur	10	[0]	10,0	u _c –	0,1	Norm (feucht)		[m³/h]	508	u _c = u _c =	19
Feuchte	*)	[kg/m³]	0,015	u _c =	0.001	Norm (trocken)		[m³/h]	498	u _c =	19
Feuchte	gp H2O	[Vol-%]	1,9	u _c =	0,1	Up Norm (trocken)		[m³/h]	37	7,5 %	K = 2
Dichte	p*)	[kg/m³]	1,293					***************************************	***************************************		~~~~~
Dichte	p Betrieb	[kg/m³]	1,165	u _c =	0,006		***************************************				
Luftdruck	P atm	[Pa]	98.440	u _c =	173						
Statischer Druck	P stat	[Pa]	-7	u _c =	0,9						
Absolutdruck	Pc	[Pa]	98.433	u _c =	173	****					
Dynamischer Druck	ΔΡ	[Pa]	2,8	u _c =	0,1						
Geschwindigkeit	ט	[m/s]	2,20	uc =	0,11	- Korrektur mittlere G	eschwi	ndigkeit (W	andeffekte)	
Sauerstoff		[Vol.%]	21,0	u _c =	0,6	Ausgleichsfaktor für W	andfläch	en			
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig mittlere Geschwindigk	0,995 eit v (kor			2,19	m/s
Rest als Stickstoff		[Vol.%]	79,0			Entsprechend sind aud			e korrigiert.		

^{*)} bezogen auf Normzustand, (273 K; 1013 hPa), trocken

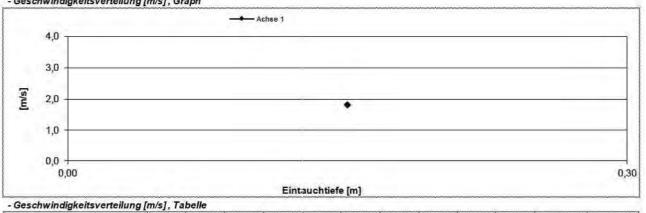




Anhang Mess- und R											
- Bericht-Nr.		BASF_S	okalan_E	-MI_20	23	- Anlage	Sokalar	nfabrik			
- Firma	BASF SE	:				- Quelle	A001				
- Probenahmeparam	***************************************			~~~~~							
- Messdatum	22.02.20	24				- Uhrzeit	von	11:56	bis	12:26	Uhr
- Bemerkung											
- Beschreibung Mess	squerschnit					·p					
Durchmesser		[m]	0,300	u _c =	0,006	gerade Einlaufstrecke gerade Auslaufstrecke		[m] [m]	1,50 2,40		
Fläche Messebene A		[m²]	0,0707	u _c =	0,002	Messöffnungen		2			
Hydraulischer Ø (HD)		[m]	0,300			Innenwand		glattwandi	g		
- Anforderung DIN 15	5259 (6.2) / D	IN 13284	-1			- Empfehlung DIN 15	259				
Abgasströmung Winke	l zur Hauptac	hse < 15 °)		ja	gerade Einlaufstrecke	(1,5 m) >	= 5 x HD (1,	5 m) ?		ja
keine lokale negative S	Strömung?				ja	gerade Auslaufstrecke	(2,4 m)	>= 2 x HD (0	,6 m)?		ja
v MAX / v MIN mit 1 : 1	ist < 3 : 1 ?				ja						
Dynamischer Druck > 5					ja						
Wandabstand MP 1/0	> 5 cm bzw. >	3 % v. Ø	?		ja						
- Mittlere Abgasparan	neter	······				- Mittlerer Volumenst	rom		***************************************		
Abgastemperatur	Tc	[°C]	17,9	u _c =	0,1	Betriebszustand		[m³/h]	354	u _c =	20
						Norm (feucht)		[m³/h]	323	$u_c =$	12
Feuchte	*)	[kg/m³]	0,015	u _c =	0,001	Norm (trocken)		[m³/h]	317	u _c =	12
Feuchte	ф H2O	[Vol%]	1,8	u _c =	0,1	Up Norm (trocken)	ATZ-ENDOUR-LOUA HARD	[m³/h]	24	7,5 %	K=2
Dichte	p*)	[kg/m³]	1,293								
Dichte	p Betrieb	[kg/m³]	1,165	u _c =	0,006						
Luftdruck	P atm	[Pa]	98.370	u _c =	173						
Statischer Druck	P stat	[Pa]	-7	u _c =	0,9						
Absolutdruck	Pc	[Pa]	98.363	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	1,1	u _c =	0,1						
Geschwindigkeit	υ	[m/s]	1,40	uc =	0,07	- Korrektur mittlere G	eschwi	ndigkeit (Wa	andeffekte	e)	
Sauerstoff		[Vol.%]	21,0	u _c =	0,6	Ausgleichsfaktor für W	andfläch	en	••••••		
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig mittlere Geschwindigk	0,995	rigiert)		1.39	m/s
Rest als Stickstoff		[Vol.%]	79,0			Entsprechend sind aud			korrigiert		illia

*) bezogen auf Normzustand, (273 K; 1013 hPa), trocken

- Geschwindigkeitsverteilung [m/s], Tabelle Messpunkt Eintauchtiefe [m] 0,15 Achse 1 1,40 - Crestfaktor Gesamt Profil = < 1,3 ? - Schiefe Gesamt Profil = < 1,2 ? ja nein



Anhand	Mess-un	d Rechei	werte

- Bericht-Nr. - Firma	3917201_ BASF SE		okalan_E	MI_20	23	- Anlage - Quelle	Sokalan A001	fabrik			
- Probenahmeparame											
- Messdatum	22.02.202	24		***************************************		- Uhrzeit	VOD	13:44	bis	14:14	Uhr
- Bemerkung											
- Beschreibung Mess	querschnitt										
Durchmesser		[m]	0,300	u _c =	0,006	gerade Einlaufstrecke gerade Auslaufstrecke		[m] [m]	1,50 2,40		
Fläche Messebene A		[m²]	0,0707	u _c =	0,002	Messöffnungen		2	4.7		
Hydraulischer Ø (HD)		[m]	0,300			Innenwand		glattwandi	g		
- Anforderung DIN 15	259 (6.2) / D	IN 13284	-1			- Empfehlung DIN 15	259				
Abgasströmung Winkel	zur Hauptac	hse < 15 °	1		ja	gerade Einlaufstrecke	(1,5 m) >	= 5 x HD (1,	5 m)?		ja
keine lokale negative S	And the second second second				ja	gerade Auslaufstrecke	(2,4 m) >	= 2 x HD (0	,6 m)?		ja
υ MAX / υ MIN mit 1 : 1					ja						
Dynamischer Druck > 5		Ar earl			ja						
Wandabstand MP 1/0 >		3 % v. Ø	?		ja						
- Mittlere Abgasparam						- Mittlerer Volumenst	rom		·······		
Abgastemperatur	Tc	[°C]	17,0	u _c =	0,1	Betriebszustand		[m³/h]	456	$u_c =$	25
						Norm (feucht)		[m³/h]	415	$u_c =$	16
Feuchte	*)	[kg/m³]	0,015	u _c =	0,001	Norm (trocken)		[m³/h]	408	u _c =	15
Feuchte	ф H2O	[Vol%]	1,8	u _c =	0,1	Up Norm (trocken)		[m³/h]	30	7,5 %	K=2
Dichte	p*)	[kg/m³]	1,293								
Dichte	p Betrieb	[kg/m³]	1,165	u _c =	0,006						
Luftdruck	P atm	[Pa]	98.100	u _c =	173						
Statischer Druck	P stat	[Pa]	-7	u _c =	0,9						
Absolutdruck	Pc	[Pa]	98.093	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	1,9	u _c =	0,1	****					
Geschwindigkeit	Ū	[m/s]	1,80	uc =	0,09	- Korrektur mittlere G	eschwin	digkeit (Wa	andeffekte	e)	
Sauerstoff		[Vol.%]	21,0	u _c =	0,6	Ausgleichsfaktor für W	andfläche	n			
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig	0,995				
						mittlere Geschwindigk	eit v (kom	igiert)		1,79	m/s
Rest als Stickstoff		[Vol.%]	79.0			Entsprechend sind aud	h die Vol	umenströme	kominiert		

^{*)} bezogen auf Normzustand, (273 K; 1013 hPa), trocken

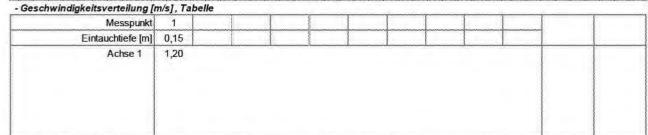
- Geschwindigkeitsverteilung [m/s], Graph

Messpunkt Eintauchtiefe [m] 0,15 1,80 Achse 1

decino				***************************************
			***************************************	***************************************
and the second			***************************************	

restfaktor Gesamt Profil =	 * -	- Schiefe Gesamt Profil =	< 1.2 ?	nein


Anhang Mess- und Rechei	nwerte
-------------------------	--------


Anhang Mess- und Re	echenwerte										
- Bericht-Nr.	3917201	_BASF_S	okalan_E	MI_20	23	- Anlage	Sokalar	nfabrik			
- Firma	BASF SE	•				- Quelle	A001				
- Probenahmeparame	ter vor Ort										
- Messdatum	22.02.202	24				- Uhrzeit	von	16:14	bis	16:44	Uhr
- Bemerkung											
- Beschreibung Mess	querschnitt	<u> </u>									
Durchmesser		[m]	0,300	u _c =	0,006	gerade Einlaufstrecke gerade Auslaufstrecke		[m] [m]	1,50 2,40		
Fläche Messebene A		[m²]	0,0707	u _c =	0,002	Messöffnungen		2			
Hydraulischer Ø (HD)		[m]	0,300			Innenwand		glattwandi	g		
- Anforderung DIN 15	259 (6.2) / D	IN 13284-	1			- Empfehlung DIN 15	259				
Abgasströmung Winkel	zur Hauptac	hse < 15 °			ja	gerade Einlaufstrecke	(1,5 m) >	= 5 x HD (1,	5 m)?		ja
keine lokale negative St	trömung?				ja	gerade Auslaufstrecke	(2,4 m)	>= 2 x HD (0	,6 m)?		ja
υ MAX / υ MIN mit 1 : 1					ja						
Dynamischer Druck > 5					ja	***************************************					
Wandabstand MP 1/0 >	5 cm bzw. >	> 3 % v. Ø	?		ja						
- Mittlere Abgasparam	***************************************			·······		- Mittlerer Volumenst	rom				
Abgastemperatur	Tc	[°C]	15,6	u _c =	0,1	Betriebszustand		[m³/h]	304	$u_c =$	17
						Norm (feucht)		[m³/h]	277	u _c =	10
Feuchte	*)	[kg/m³]	0,014	u _c =	0,001	Norm (trocken)		[m³/h]	273	u _c =	10
Feuchte	ф H2O	[Vol%]	1,7	u _c =	0,1	Up Norm (trocken)		[m³/h]	20	7,5 %	K=2
Dichte	p*)	[kg/m³]	1,293								
Dichte	p Betrieb	[kg/m³]	1,168	u _c =	0,006				***************************************	***************************************	
Luftdruck	P atm	[Pa]	97.800	u _c =	173						
Statischer Druck	P stat	[Pa]	-7	u _c =	0,9	***************************************					
Absolutdruck	Pc	[Pa]	97.793	u _c =	173						
Dynamischer Druck	ΔΡ	[Pa]	0,8	u _c =	0,0	····					
Geschwindigkeit	U	[m/s]	1,20	uc =	0,06	- Korrektur mittlere G	eschwi	ndigkeit (Wa	andeffekte	e)	
Sauerstoff		[Vol.%]	21,0	u _c =	0,6	Ausgleichsfaktor für W			•		
Kohlendioxid		[Vol.%]	0,0	u _c =	0,0	glattwandig	0,995				
					6.48	mittlere Geschwindigk	- 10000	rigiert)		1,19	m/s
Rest als Stickstoff		[Vol.%]	79.0			Entsprechend sind aud			kominiert		100

^{*)} bezogen auf Normzustand, (273 K; 1013 hPa), trocken

- Geschwindigkeitsverteilung [m/s], Graph

- Crestfaktor Gesamt Profil =

- Schiefe Gesamt Profil =

< 1,2 ?

nein

< 1,3 ?

ja

Standardabweichung uc:

*) Normzustand (trocken), (273 K; 1013 hPa)

- Berichts-Nr.: 3917201_BASF_Sokalan_EMI_ - Firma: BASF SE	2023		Anlage:Quelle:	Sokalanfa A001	brik		
Messkomponente:		Feststoffe		Out-Stack Planfilter			
Probenahmeparameter Randbedingungen:							
 Anzahl durchgeführter Einzelmessungen: 				4	1	6	
- Bemerkung:		St 1	St 2	St 3	St 4		
- Messung-Nr.:		1	2	3	4		
- Messdatum:	46	22.02.24	22.02.24	22.02.24	22.02.24		
- Uhrzeit :	von:	11:18	11:56	13:44	16:14		
	bis:	11:48	12:26	14:14	16:44		
- Luftdruck:	[hPa]	984	984	981	978		
- Mittleres Abgasvolumen (N, tr):	[m³/h]	498	317	408	273		
Standardabweichung uc:	[m³/h]	19	12	15	10		
- Mittlere Abgasgeschwindigkeit:	[m/s]	2,2	1,4	1,8	1,2		
	1						
- Abgasreinigung vorhanden ?		nein	nein	nein	nein		
Probenahmeparameter Feststoffe (Staub):	1 2	1 22			arare i		
- Zählerstand Gasuhr Messbeginn:	[m³]	76,329	77,162	77,930	78,755		
- Zählerstand Gasuhr Messende:	[m³]	77,119	77,917	78,706	79,467		
- Kalibrierfaktor Gasuhr		1,009	1,009	1,009	1,009		
- Abgesaugtes Teilgasvolumen:	[m³]	0,797	0,762	0,783	0,718		
- Mittlerer Unterdruck Gasuhr:	[hPa]	65	65	65	60		
- Mittlere Temperatur Gasuhr:	[°C]	9	10	10	10		
- Abgesaugtes Teilgasvolumen (N, tr): 1)	[m³] *	0,808	0,782	0,797	0,745		
- Durchmesser Düse:	[mm]	20	20	20	20		
- Isokinetischer Faktor:		0,73	1,11	0,88	1,23		
		A 17 200 1200 1	and the second		in-		
) Bei dem abgesaugten Teilgasvolumen Staub wurden die abgesaugt	en Normvolumen de		and the second s		The second section will be a second section and the		
Parameter Labor Feststoffe (Staub) :	T 10.1				f die Einzelmessungen	verteilt	
- Bestimmungsgrenze:	[mg/Pr.]	0,3	0,3	0,3	0,3		
- Bestimmungsgrenze:	[mg/m ³ *]	0,37	0,38	0,37	0,40		
Analysenergebnisse Feststoffe (Staub) :							
Gesamtauswaage	[mg/Pr.]	0,6	0,5	0,4	0,8		
davon Auswaage Filter	[mg/Pr.]	0,57	0,5	0,42	0,83		
davon Auswaage Sonde	[mg/Pr.]	< 0,3	< 0,3	< 0,3	< 0,3	117 =	
Anteil Auswaage Sonde je Einzelmesssung	[mg/Pr]	-1-	< 0,3	< 0,3	< 0,3		
Feldblindwert	[mg/Pr.]	< 0,3					
Blindwerte umgerechnet auf abgesaugte Volu Feldblindwert	mina: [mg/m³ *]	< 0,37					
1 CHADISTURYCLE	[mg/m]	0,01					
Messergebnisse Einzelmessungen Feststoffe	(Staub):						
- Massenkonzentrationen	[mg/m³ *]	0,7	0,6	0,5	1,0		
Standardabweichung uc:	[mg/m³ *]	0,12	0,12	0,12	0,13		
	page 1	3,12	×115	0,12	21.3		
- Massenstrom:	[g/h]	0,348	0,190	0,203	0,272		
Standardabweichung uc:	[g/h]	0,061	0,038	0,049	0,036		
Messergebnisse Zusammenfassung Feststoff	1	7.424.7		45.65			
Messung 1 bis 4	1	MW	MIN	MAX	Bemerkungen		
- Massenkonzentrationen	[mg/m³ *]	0,7	0,5	1,0	MW = Mittelwert		
Standardabweichung uc:	[mg/m³ *]	0,12	0,12	0,13	MIN = Minimalwert		
	1		14.2	54.15	MAX = Maximalwe		
					n.n. = kleiner Besti		
- Massenstrom:	[g/h]	0,253	0,190	0,348	Die Mittelwertbered		
Standardahweichung uc:	[g/h]	0.046	0.038	0.061	ganzer Bestimmun		

[g/h]

0,061

0,038

**) Normzustand (feucht), (273 K; 1013 hPa)

ganzer Bestimmungsgrenze

Standardabweichung uc:

*) Normzustand (trocken), (273 K; 1013 hPa)

 Berichts-Nr Firma: 	3917201_BASF_Sokalan_B BASF SE	EMI_2023		Anlage:Quelle:	Sokalanfa A001	brik	
Messkompor	nente:		NH3				
	eparameter Randbedingunger		11110				
	chgeführter Einzelmessungen:		· ·		4	1	
- Bernerkung			NH3 1	NH32	NH33	NH3 4	
- Messung-N			1	2	3	4	
- Messdatum	1.		22.02.24	22.02.24	22.02.24	22.02.24	
- Uhrzeit :		von:	11:18	11:56	13:44	16:14	
		bis:	11:48	12:26	14:14	16:44	
- Luftdruck:		[hPa]	984	984	981	978	
	bgasvolumen (N, tr):	[m³/h]	498	317	408	273	
Standardat	oweichung uc:	[m³/h]	19	12	15	10	
A4				2080	2.0	225	
- Abgasreinigu	ng vorhanden ?		nein	nein	nein	nein	
	Same Same Same						
	eparameter NH3:	r91	0.000 1	0.000	0.000	0.000	- 65
	d Gasuhr Messbeginn: d Gasuhr Messende:	[m³]	0,000 0,051	0,000 0,059	0,000	0,000	
 Zanierstand Kalibrierfak 	HISTORIAL STREET	[m³]	0,051	0,059	0,060	0,061	
	es Teilgasvolumen:	[m³]	0,997	0,997	0,060	0,997	
- Augesaugt	co religasvolumen.	linel	0,001	0,000	0,000	0,001	
- Mittlere Ter	mperatur Gasuhr:	[°C]	12	12	12	12	
	es Teilgasvolumen (N, tr):	[m³] *	0,048	0,054	0,056	0,056	
Parameter L	1_10pt 18_84 8 1 /						
- Bestimmun	4 1 2 1 1 1 1 1 1 1	[mg/Pr.]	0,02	0,02	0,02	0,02	
- Bestimmur		[mg/m³ *]	0,4	0,3	0,3	0,3	
	gebnisse NH3 :	1	[1			
Gesamtpro	De	[mg/Pr.]	< 0,02	< 0,02	< 0,02	< 0,02	
Feldblindw	ert	[mg/Pr.]	< 0.02				
Cidolifida		[mg/ri-]	0,02				
Blindwerte de Feldblindwerte	umgerechnet auf abgesaugte	Volumina: [mg/m³ *]	< 0,4				
Cidomida		[ingan_1	0,1				
TABLE TO SELECT TO	isse Einzelmessungen NH3:						
	nzentrationen	[mg/m³ *]	100000	< 0,3	< 0,3	< 0,3	
Standardal	oweichung uc:	[mg/m³ *]	0,36	0,36	0,36	0,36	
				1.79			
 Massenstro 	om:	[g/h]	< 0,199	< 0,095	< 0,122	< 0,081	
Standardal	oweichung uc:	[g/h]	0,179	0,114	0,146	0,098	
11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nisse Zusammenfassung NH3:						
Messung 1			MW	MIN	MAX	Bemerkungen	
	zentrationen	[mg/m³ *]	n.n.	n.n.	n.n.	MW = Mittelwert	
Standardat	oweichung uc:	[mg/m³ *]	0,36	0,36	0,36	MIN = Minimalwert	
				9-27-7-7-1	- 74	MAX = Maximalwe	
Manager		r_n_1				n.n. = kleiner Besti	
- Massenstro	om: oweichung uc	[g/h] [g/h]	n.n. 0 134	n.n. 0.098	n.n. 0 179	Die Mittelwertberen ganzer Bestimmun	

[g/h]

0,134

0,098

**) Normzustand (feucht), (273 K; 1013 hPa)

0,179

ganzer Bestimmungsgrenze

Anhang:	Mess-	und	Rechenwerte
---------	-------	-----	-------------

- Berichts-Nr.:	3917201_BASF_Sokalan_EMI_2023	- Anlage:	Sokalanfabrik	
- Firma:	BASF SE	- Quelle:	A001	

Probenahmeparameter Randbedingungen				4	1	
- Anzahl durchgeführter Einzelmessungen:		AK 1	AK2	AK3	AK4	
- Bernerkung:			2			
- Messung-Nr.: - Messdatum:		22.02.24	22.02.24	22 02 24	22 02 24	
- Messaatum. - Uhrzeit :	1 1000	11:18	11:56	13:44	16:14	*
- Offizer.	von: bis:	11:48	12:26	14:14	16:44	
- Luftdruck:	[hPa]	984	984	981	978	7
- Mittleres Abgasvolumen (N, tr):	[m³/h]	498	317	408	273	7
Standardabweichung uc:	[m³/h]	19	12	15	10	
Standardabwellending de.	[m m]	10	12	10	10	9
			-			
				17.11		
- Abgasreinigung vorhanden ?		nein	nein	nein	nein	
						1
Probenahmeparameter 2-Hexanon:						
- Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000	0,000	
- Zählerstand Gasuhr Messende:	[m³]	0,029	0,029	0,030	0,030	
- Kalibrierfaktor Gasuhr		1,000	1,000	1,000	1,000	
 Abgesaugtes Teilgasvolumen: 	[m³]	0,029	0,029	0,029	0,030	-
- Mittlere Temperatur Gasuhr:	[°C]	12	13	13	13	ji i =
- Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,027	0,027	0,027	0,028	
Parameter Labor 2-Hexanon :						
- Bestimmungsgrenze:	[mg/Pr.]	0,001	0,001	0,001	0,001	
- Bestimmungsgrenze:	[mg/m³ *]	0,001	0,001	0,001	0,03	
Analysenergebnisse 2-Hexanon :	[mgma]	5,00	0,00	0,00	0,00	
Gesamtprobe	[mg/Pr.]	< 0,010	0,039	0.046	0.034	
Gesamprobe	[mg/rt.]	× 0,010	0,035	0,040	0,034	
Feldblindwert	[ma/Dr1	< 0.01				
reignifidweit	[mg/Pr.]	\ U,U1				
Blindwerte umgerechnet auf abgesaugte \	/olumina:					
Feldblindwert	[mg/m³ *]	< 0.36				
1	Lange 1	0,00				

Messergebnisse Einzel	lmessungen 2-H	exanon:

- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	<	0,3 0,03	1,4 0,08	1,6 0,08	1,2 0,07	
- Massenstrom: Standardabweichung uc:	[g/h] [g/h]	<	0,149 0.015	0,443 0,030	0,652 0.040	0,327 0,022	

Address to the first	**************************************	0 11
Wessergebnisse	Zusammenfassung	2-mexanon:

Messung 1 bis 4		MW	MIN	MAX	Bemerkungen
Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	1,1 0.07	n.n. 0.03	1,6 0.08	MW = Mittelwert MIN = Minimalwert
construction of ac-	[mg.m]		0,00	5,00	MAX = Maximalwert n.n. = kleiner Bestim
Massenstrom: Standardabweichung uc:	[g/h] [g/h]	0,393 0,027	n.n. 0,015	0,652 0,040	Die Mittelwertberech ganzer Bestimmung:
*) Normzustand (trocken) (273 K: 1013 hPa.)		**) Normzusta	and (feucht) (2	73 K: 1013 hPa	1)

Bemerkungen	
MW = Mittelwert	
MIN = Minimalwert	
MAX = Maximalwert	
n.n. = kleiner Bestimmungsgrenze	
Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze	

Anhang: Mess- und Rechenwerte

 - Berichts-Nr.:
 3917201_BASF_Sokalan_EMI_2023
 - Anlage:
 Sokalanfabrik

 - Firma:
 BASF SE
 - Quelle:
 A001

Messkomponente:

N,N--Bis(3-aminopropyl)ethylendiamin

Probenanmeparameter Randbedingungei	benahmeparameter Randbedingung	en:
-------------------------------------	--------------------------------	-----

 Anzahl durchgeführter Einzelmessungen: 				4		
- Bemerkung:		ADS 1	ADS 2	ADS 3	ADS 4	1
- Messung-Nr.:		1	2	3	4	
- Messdatum:		22.02.24	22.02.24	22.02.24	22.02.24	
- Uhrzeit :	von:	11:18	11:56	13:44	16:14	
	bis:	11:48	12:26	14:14	16:44	
- Luftdruck:	[hPa]	984	984	981	978	
- Mittleres Abgasvolumen (N, tr):	[m³/h]	498	317	408	273	
Standardabweichung uc:	[m³/h]	19	12	15	10	
				- 14		
- Abgasreinigung vorhanden ?		nein	nein	nein	nein	
				1 11		
Probenahmeparameter :						
- Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000	0,000	
 Zählerstand Gasuhr Messende: 	[m³]	0,026	0,027	0,027	0,027	
- Kalibrierfaktor Gasuhr		1,049	1,049	1,049	1,049	
- Abgesaugtes Teilgasvolumen:	[m³]	0,027	0,029	0,028	0,028	
- Mittlere Temperatur Gasuhr:	[°C]	13	13	13	12	
- Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,025	0,027	0,026	0,026	

Parameter Labor :

- Bestimmungsgrenze:	[mg/Pr.]		0,01		0,01	10-	0,01		0,01	
- Bestimmungsgrenze:	[mg/m ³ *]		0,3		0,3		0,3		0,3	
Analysenergebnisse :										
Gesamtprobe	[mg/Pr.]	<	0,01	<	0,01	<	0,01	<	0,01	

V.		
Feldblindwert	[ma/Pr.] < 0.01	

Blindwerte umgerechnet auf abgesaugte Volumina:

Feldblindwert	[mg/m³ *] < 0,397

Messergebnisse Einzelmessungen:

- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	<	0,3 0,03	<	0,3 0,03	<	0,3 0,03	<	0,3 0,03	
Massenstrom: Standardabweichung uc:	[g/h] [g/h]	<	0,149 0.015	<	0,095 0.010	<	0,122 0.013	<	0,081 0.008	

Messergebnisse Zusammenfassung:

Messung 1 bis 4		MW	MIN	MAX	Bemerkungen
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	n.n. 0,03	n.n. 0,03	n.n. 0,03	MW = Mittelwert MIN = Minimalwert
					MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze
- Massenstrom: Standardabweichung uc:	[g/h] [g/h]	n.n. 0,012	n.n. 0,008	n.n. 0,015	Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze
*) Normzustand (trocken) (273 K: 1013 hPa.)		**) Normzusta	nd (feucht) (2)	73 K- 1013 hPa	1

Seite 34 von 40 Zeichen/Erstelldatum: IS-US1-MAN/No / 22.10.2024 Berichtsnummer: 3917201_Sokalan-Fabrik_Nord_EMI_2024.docx

*) Normzustand (trocken), (273 K; 1013 hPa)

Berichts-Nr.: Firma:	3917201_BASF_Sokalan_E BASF SE	MI_2023		- Anlage: - Quelle:	Sokalanfa A001	brik	
/lesskompone	ente:	-	Acetaldeh	yd			
robenahmer	parameter Randbedingungen		2.00000				
	ngeführter Einzelmessungen:	•			4		
Bemerkung:			A1	A2	A3	A4	
Messung-Nr.	÷		- 1	2	3	4	
Messdatum:			22.02.24	22.02.24	22.02.24	22.02.24	
Uhrzeit:		von:	11:18	11:56	13:44	16:14	
		bis:	11:48	12:26	14:14	16:44	
Luftdruck:	A	[hPa]	984	984	981	978	1
and the second second	gasvolumen (N, tr):	[m²/h]	498	317	408	273	
Standardabw	reichung uc:	[m³/h]	19	12	15	10	2
			9 3	-			
				-			-
		**	9	-		-	Š
Abgasreinigung	vorhanden ?		nein	nein	nein	nein	
-5	No. control 757 to						
Probenahmen	parameter Acetaldehyd:				- '		
	Gasuhr Messbeginn:	[m³]	0.000	0,000	0,000	0,000	
	Gasuhr Messende:	[m³]	0,027	0,027	0,024	0,026	
- Kalibrierfakto	or Gasuhr		1,010	1,010	1,010	1,010	
- Abgesaugtes	Teilgasvolumen:	[m³]	0,027	0,027	0,024	0,026	
-							
Mittlere Tem	peratur Gasuhr:	[°C]	12	12	12	11	
- Abgesaugtes	Teilgasvolumen (N, tr):	[m²] *	0,025	0,025	0,022	0,024	
						L	
	bor Acetaldehyd :						
- Bestimmung		[mg/Pr.]	0,001	0,001	0,001	0,001	
- Bestimmung:		[mg/m³ *]	0,03	0,03	0,04	0,04	
	ebnisse Acetaldehyd :						
Gesamtprobe	е	[mg/Pr.]	0,003	0,067	0,001	0,093	
Feldblindwer	t	[mg/Pr.]	< 0,001				
Blindwerte un Feldblindwer	ngerechnet auf abgesaugte \	1 - 1	< 0,03				
1 CIGDIII GWCI		[mg/m-1	. 0,00				
	sse Einzelmessungen Acetal						i i
- Massenkonz		[mg/m² *]	0,1	2,6	0,0	3,8	
Standardabw	eichung uc:	[mg/m³ *]	0,00	0,18	0,00	0,26	
				- 222			
Massenstron		[g/h]	0,049	0,824	0,000	1,036	
Standardabw	eichung uc:	[g/h]	0,001	0,065	0,000	0,080	
Messergebnis	sse Zusammenfassung Aceta	ıldehyd:					
Messung 1	bis 4		MW	MIN	MAX	Bemerkungen	
Massenkonz	entrationen	[mg/m³ *]	1,6	n.n.	3,8	MW = Mittelwert	
Standardaby	veichung uc:	[mg/m³ *]	0,11	0,00	0,26	MIN = Minimalwer	ř.
Ottaria di di di di						MAX = Maximalwe	ert
otanga dabi						ton at a tonouthing	
						n.n. = kleiner Best	
- Massenstron	n:	[g/h]	0,477	n.n.	1,036		immungsgrenze chnung erfolgt mit

**) Normzustand (feucht), (273 K; 1013 hPa)

Anhang: Mess- und Rechenwerte

- Berichts-Nr.:	3917201_BASF_Sokalan_EMI_2023	- Anlage:	Sokalanfabrik
- Firma:	BASF SE	- Quelle:	A001

Messkomponente: Formaldehyd (HCHO)

Probenahmeparameter	Randbedingungen:
---------------------	------------------

 Anzahl durchgeführter Einzelmessungen: 				4		
- Bemerkung:		A1	A2	A3	A4	
- Messung-Nr.:		1	2	3	4	
- Messdatum:		2.2.02.24	22.02.24	22.02.24	22.02.24	ja -
- Uhrzeit :	von:	11:18	11:56	13:44	16:14	
	bis:	11:48	12:26	14:14	16:44	
- Luftdruck:	[hPa]	984	984	981	978	
- Mittleres Abgasvolumen (N, tr):	[m³/h]	498	317	408	273	
Standardabweichung uc:	[m³/h]	19	12	15	10	
- Abgasreinigung vorhanden ?		ja	ja	ja	ja	

Probenahmeparameter Formaldehyd (HCHO):

- Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000	0,000	
- Zählerstand Gasuhr Messende:	[m³]	0,027	0,027	0,024	0,026	
- Kalibrierfaktor Gasuhr		1,010	1,010	1,010	1,010	
- Abgesaugtes Teilgasvolumen:	[m³]	0,027	0,027	0,024	0,026	
- Mittlere Temperatur Gasuhr:	[°C]	12	12	12	11	
- Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,025	0,025	0,022	0,024	e e
			-			i e
						J-

Parameter Labor Formaldehyd (HCHO):

- Bestimmungsgrenze:	[mg/Pr.]	0,001	0,001	0,001	0,001	
- Bestimmungsgrenze:	[mg/m³ *]	0,03	0,03	0,04	0,04	
Analysenergebnisse Formaldehyd	(HCHO):					

Analysenergebnisse Formaldehyd (HCHO):										
Gesamtprobe	[mg/Pr.]	0,001	<	0,001	<	0,001	<	0,001	1	

Feldblindwert	[mg/Pr.] <	0,001

Blindwerte umgerechnet auf abgesaugte Volumina:

Feldblindwert	[mg/m³ *] < 0,03	
---------------	------------------	--

Messergebnisse Einzelmessungen Formaldehyd (HCHO):

Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	0,03 0,041	< 0,03 0,041	< 0,04 0,041	< 0,04 0,041	
Massenstrom: Standardabweichung uc:	[g/h] [g/h]	0,014 0,020	< 0,009 0,013	< 0,016 0,016	< 0,010 0,011	

Messergebnisse Zusammenfassung Formaldehyd (HCHO):

Messung 1 bis 4		MW	MIN	MAX	Bemerkungen
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	0,0 0.04	n.n.	0,0	MW = Mittelwert MIN = Minimalwert
Standardabwerchung uc.	[mg/m-1]	0,04	0,04	0,04	MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze
- Massenstrom: Standardabweichung uc:	[g/h] [g/h]	0,012 0,015	n.n. 0,011	0,016 0,020	Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze
*) Normzustand (trocken), (273 K; 1013 hPa)		**) Normzusta	nd (feucht), (2	73 K; 1013 hPa)

*) Normzustand (trocken), (273 K; 1013 hPa)

- Berichts-Nr.: 3917201_BASF_Sokalan_E - Firma: BASF SE	MI_2023		Anlage:Quelle:	Sokalanf A001	abrik	
Messkomponente:	Crotonaldehyd					
Probenahmeparameter Randbedingungen.						
- Anzahl durchgeführter Einzelmessungen:				- 1-7	4	
- Bemerkung:		A1	A2	A3	A4	
- Messung-Nr.:		1	2	3	4	
- Messdatum:	T	22.02.24	22.02.24	22.02.24	22.02.24	
- Uhrzeit :	von	11:18	11:56 12:26	13:44	16:14	
- Luftdruck:	bis: [hPa]	11:48 984	984	14:14 981	16:44 978	
Mittleres Abgasvolumen (N, tr):	[m³/h]	498	317	408	273	
Standardabweichung uc:	[m³/h]	19	12	15	10	110
	1 1		-			
					10	
- Abgasreinigung vorhanden ?	_	To.	Ta.	1-	in	
- Abgasieinigung vornanden z	+	ja	ja	ja	ja	
Probenahmeparameter Crotonaldehyd:		1			1	/d
- Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000	0,000	-
- Zählerstand Gasuhr Messende:	[m³]	0,027	0,027	0,024	0,026	
- Kalibrierfaktor Gasuhr		1,010	1,010	1,010	1,010	
 Abgesaugtes Teilgasvolumen: 	[m³]	0,027	0,027	0,024	0,026	
Ten T	F0.03	10	40	10		
- Mittlere Temperatur Gasuhr:	[°C]	12 0.025	12 0.025	0.022	0.024	
- Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,025	0,025	0,022	0,024	
1 Page 2015 Page 30 Control of Control of Caracter Control of Cara	[mg/Pr.]	0,002	0,002	0,002	0,002	
- Bestimmungsgrenze:	[mg/Pr.] [mg/m³ *]	0,002 0,07	0,002 0,07	0,002 0,08	0,002	
- Bestimmungsgrenze: - Bestimmungsgrenze:						
- Bestimmungsgrenze: - Bestimmungsgrenze:		0,07				
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd :	[mg/m³ *]	0,07	0,07	0,08	0,08	
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd :	[mg/m³ *]	0,07	0,07	0,08	0,08	
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd :	[mg/m³ *]	0,07	0,07	0,08	0,08	
- Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd: Gesamtprobe	[mg/m³ *]	0,07	0,07	0,08	0,08	
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert	[mg/m³ *] [mg/Pr.] [mg/Pr.]	0,07 < 0,002 < 0,002	0,07	0,08	0,08	
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert	[mg/Pr.]	0,07	0,07	0,08	0,08	
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert	[mg/m³ *] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *]	0,07 < 0,002 < 0,002	0,07	0,08	0,08	
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert	[mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] aldehyd:	< 0,002 < 0,002 < 0,002 < 0,007	0,07	0,08	< 0.002	
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Crotoni Massenkonzentrationen	[mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] aldehyd: [mg/m³ *]	< 0,002 < 0,002 < 0,002 < 0,007 < 0,007	0,07 < 0,002 < 0,07	0,08 < 0,002 < 0,08	< 0,08	
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert	[mg/Pr.] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] aldehyd:	< 0,002 < 0,002 < 0,002 < 0,007	0,07	0,08	< 0.002	
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse Crotonaldehyd: - Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Crotoni Massenkonzentrationen	[mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] aldehyd: [mg/m³ *]	< 0,002 < 0,002 < 0,002 < 0,007 < 0,007	0,07 < 0,002 < 0,07	0,08 < 0,002 < 0,08	< 0,08	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Croton - Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [olumina: [mg/m³ *] aldehyd: [mg/m³ *]	< 0,002 < 0,002 < 0,007 < 0,007 < 0,004	0,07 < 0,002 < 0,07 0,004	< 0,002 < 0,002 < 0,008 0,005	< 0,08 < 0,002 < 0,008 < 0,005	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Croton: - Massenkonzentrationen Standardabweichung uc: - Massenstrom:	[mg/m³ *] [mg/Pr.] [olumina: [mg/m³ *] aldehyd: [mg/m³ *] [mg/m³ *]	< 0,002 < 0,002 < 0,007 < 0,004 < 0,004 < 0,004	0,07 < 0,002 < 0,07 0,004 < 0,022	< 0,002 < 0,002 < 0,008 0,005 < 0,032	< 0,08	
Bestimmungsgrenze: Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Crotone Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc:	[mg/m³ *] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] aldehyd: [mg/m³ *] [mg/m³ *] [g/h] [g/h]	< 0,002 < 0,002 < 0,007 < 0,007 < 0,004	0,07 < 0,002 < 0,07 0,004	< 0,002 < 0,002 < 0,008 0,005	< 0,08 < 0,002 < 0,008 < 0,005	
Bestimmungsgrenze: Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Croton - Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung Croto	[mg/m³ *] [mg/Pr.] [mg/Pr.] /olumina: [mg/m³ *] aldehyd: [mg/m³ *] [mg/m³ *] [g/h] [g/h]	< 0,002 < 0,002 < 0,007 < 0,007 < 0,004 < 0,004 < 0,002	0,07 < 0,002 < 0,07 0,004 < 0,022	< 0,002 < 0,002 < 0,005 < 0,005 < 0,002	< 0,08 < 0,002 < 0,08 0,005 < 0,021 0,001	
- Bestimmungsgrenze: - Bestimmungsgrenze: - Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Croton - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung Croto Messeng 1 bis 4	[mg/m³ *] [mg/Pr.] [olumina: [mg/m³ *] aldehyd: [mg/m³ *] [mg/m³ *] [g/h] [g/h] naldehyd:	0,002	< 0,07 < 0,002 < 0,004 < 0,022 0,001 MIN	< 0,002 < 0,002 < 0,005 < 0,0032	< 0,08 < 0,002 < 0,08 0,005 < 0,021 0,001 Bemerkungen	
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Croton - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung Croto Messung 1 bis 4 - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] folumina: [mg/m³ *] aldehyd: [mg/m³ *] [g/h] [g/h] naldehyd:	< 0,002 < 0,002 < 0,007 < 0,007 < 0,004 < 0,004 < 0,002	< 0,07 < 0,002 < 0,004 < 0,022 0,001	< 0,002 < 0,002 < 0,005 < 0,005 < 0,002	< 0,08 < 0,002 < 0,08 0,005 < 0,021 0,001	
Bestimmungsgrenze: Bestimmungsgrenze: Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Crotone - Massenkonzentrationen Standardabweichung uc: Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung Croto Messeng 1 bis 4	[mg/m³ *] [mg/Pr.] [olumina: [mg/m³ *] aldehyd: [mg/m³ *] [mg/m³ *] [g/h] [g/h] naldehyd:	0,002	< 0,07 < 0,002 < 0,004 < 0,022	< 0,002 < 0,002 < 0,005 < 0,0032 0,0002 MAX n.n.	< 0,08 < 0,002 < 0,08 0,005 < 0,021 0,001 Bemerkungen MW = Mittelwert	ert
Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Croton - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung Croto Messung 1 bis 4 - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] folumina: [mg/m³ *] aldehyd: [mg/m³ *] [g/h] [g/h] naldehyd:	0,002	< 0,07 < 0,002 < 0,004 < 0,022	< 0,002 < 0,002 < 0,005 < 0,0032 0,0002 MAX n.n.	< 0,08 < 0,002 < 0,08 0,005 < 0,021 0,001 Bemerkungen MW = Mittelwert MIN = Minimalw MAX = Maximal	ert
- Bestimmungsgrenze: - Bestimmungsgrenze: - Analysenergebnisse Crotonaldehyd: Gesamtprobe Feldblindwert Blindwerte umgerechnet auf abgesaugte V Feldblindwert Messergebnisse Einzelmessungen Croton - Massenkonzentrationen Standardabweichung uc: - Massenstrom: Standardabweichung uc: Messergebnisse Zusammenfassung Croto Messung 1 bis 4 - Massenkonzentrationen	[mg/m³ *] [mg/Pr.] [mg/Pr.] folumina: [mg/m³ *] aldehyd: [mg/m³ *] [g/h] [g/h] naldehyd:	0,002	< 0,07 < 0,002 < 0,004 < 0,022	< 0,002 < 0,002 < 0,005 < 0,0032 0,0002 MAX n.n.	< 0,08 < 0,002 < 0,005 < 0,005 < 0,001 Bemerkungen MW = Mittelwert MIN = Minimalw MAX = Maximal n.n. = kleiner Be	ert wert estimmungsgrenze erechnung erfolgt mit

**) Normzustand (feucht), (273 K; 1013 hPa)

Seite 37 von 40.
Zeichen/Erstelldatum: IS-US1-MAN/No / 22.10.2024
Berichtsnummer: 3917201_Sokalan-Fabrik_Nord_EMI_2024.docx

Anhang: Mess- und Rechenwerte

- Berichts-Nr.: 3917201_BASF_Sokalan_EMI_2023 - Anlage: Sokalanfabrik - Firma: BASF SE A001 - Quelle:

Messkomponente:

Gesamt-C (FID)

Probenahmeparameter Randbedingunge		-				
 Anzahl durchgeführter Einzelmessungen: 		4				
- Bernerkung:		ges. C 1	ges. C 2	ges. C 3	ges. C 4	
- Messung-Nr.:		1	2	3	4	
- Messdatum:		22.02.24	22.02.24	22.02.24	22.02.24	
- Uhrzeit :	von:	11:18	11:56	13:44	16:14	
	bis:	11:48	12:26	14:14	16:44	
- Luftdruck:	[hPa]	984	984	981	978	
- Mittleres Abgasvolumen (N, tr):	[m³/h]	498	317	408	273	
Standardabweichung uc:	[m³/h]	19	12	15	10	8
						2
- Abgasreinigung vorhanden ?	7.7.	nein	nein	nein	nein	
- Feuchte Vwe%	[Vol%]	1,9	1,8	1,8	1,7	
Standardabweichung uc:	[Vol%]	0,05	0,05	0,05	0,05	

Parameter Messgerät Gesamt-C (FID):

- Eingestellter Messbereich 0 bis	[mg/m³ **]	161	161	161	161	
- Bestimmungsgrenze:	[mg/m³ **]	0,8	0,8	0,8	0,8	
Auswertung Gesamt-C (FID) :						
Messwert	[mg/m³ **]	7,5	8,8	8,5	5,9	

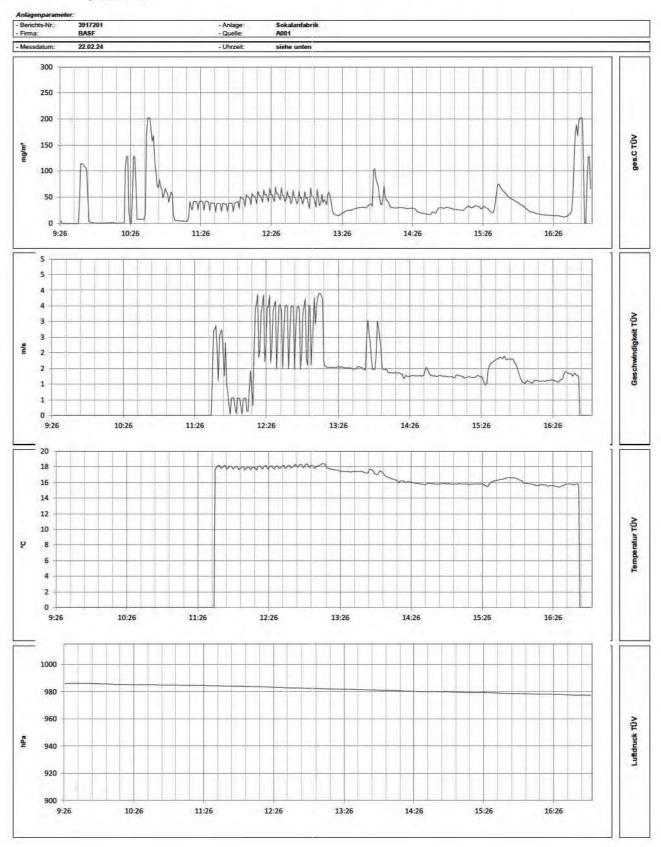
Messergebnisse Einzelmessungen Gesamt-C (FID):

- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	7,6 0,85	8,9 0,88	8,6 0,87	6,0 0,81	
- Massenstrom:	[kg/h]	0,003	0,002	0,003	0,001	
Standardabweichung uc:	[kg/h]	0,000	0,000	0,000	0,000	

Messergebnisse Zusammenfassung Gesamt-C (FID):

Messung 1 bis 4		MW	MIN	MAX	Bemerkungen	
- Massenkonzentrationen Standardabweichung uc:	[mg/m³ *] [mg/m³ *]	7,8 0,85	6,0 0,81	8,9 0,88	MW = Mittelwert MIN = Minimalwert	
					MAX = Maximalwert n.n. = kleiner Bestimmungsgrenze	
- Massenstrom: Standardabweichung uc:	[kg/h] [kg/h]	0,002 0,000	0,001 0,000	0,003 0,000	Die Mittelwertberechnung erfolgt mit ganzer Bestimmungsgrenze	
*) Normzustand (trocken), (273 K; 1013 hPa)		**) Normzusta	nd (feucht), (2)	73 K; 1013 hPa	1)	

*) Normzustand (trocken), (273 K; 1013 hPa)



Berichts-Nr.: 3917201_BASF_Sokalan_I Firma: BASF SE	EMI_2023		Anlage:Quelle:	Sokalanfal A001	brik	
Messkomponente:	SOx als SO2					
Probenahmeparameter Randbedingunger	2:					
- Anzahl durchgeführter Einzelmessungen:		-		4		
Bemerkung:						17.
Messung-Nr.:		1	2	3	4	
Messdatum:		22.02.24	22.02.24	22.02.24	22.02.24	
Uhrzeit :	von:	13:05	14:25	14:56	15:40	
	bis:	13:35	14:55	15:26	16:10	
Luftdruck:	[hPa]	982	980	980	979	
Mittleres Abgasvolumen (N, tr):	[m³/h]	475	296	273	340	
Standardabweichung uc:	[m³/h]	18	11	10	13	8
						-
Abgasreinigung vorhanden ?		nein	nein	nein	nein	
Punkanaharan SOvala SOS		en en				
Probenahmeparameter SOx als SO2: Zählerstand Gasuhr Messbeginn:	[m³]	0,000	0,000	0,000	0,000	fis .
Zählerstand Gasuhr Messende:	[m ³]	0,064	0,065	0,064	0,064	14.7
- Kalibrierfaktor Gasuhr	[]	0,997	0.997	0.997	0,997	
Abgesaugtes Teilgasvolumen:	[m³]	0,064	0,065	0,064	0,063	
Mittlere Temperatur Gasuhr:	[°C]	12	12	12	12	
Abgesaugtes Teilgasvolumen (N, tr):	[m³] *	0,059	0,060	0,059	0,059	
Parameter Labor SOx als SO2 : Bestimmungsgrenze:	[mg/Pr.]	0,01	0,01	0,01	0,01	Ĺ
Bestimmungsgrenze:	[mg/m³ *]	0,1	0.1	0,1	0.1	
Analysenergebnisse SOx als SO2 :						
Gesamtprobe	[mg/Pr.]	< 0,01	0,72	4,06	4,61	
Feldblindwert	[mg/Pr.]	0,031				
Blindwerte umgerechnet auf abgesaugte	Volumina:					
Feldblindwert	[mg/m³ *]	0,5				
Messergebnisse Einzelmessungen SOx a				-va T		
Massenkonzentrationen	[mg/m³ *]	< 0,1	12,0	68,7	78,4	
Standardabweichung uc:	[mg/m³ *]	0,62	1,03	3,01	3,34	
	[kg/h]	< 0,000	0,003	0,018	0,026	
- Massenstrom:		0,000	0,000	0,001	0,001	
Massenstrom: Standardabweichung uc:	[kg/h]	0,000				
Standardabweichung uc:	[kg/h]	0,000				
Standardabweichung uc: Messergebnisse Zusammenfassung SOx	[kg/h]	MW	MIN	MAX	Bemerkungen	
Standardabweichung uc: Messergebnisse Zusammenfassung SOx Messung 1 bis 4	[kg/h] als SO2:		MIN n.n.	MAX 78,4	Bemerkungen MW = Mittelwert	
Standardabweichung uc: Messergebnisse Zusammenfassung SOx Messung 1 bis 4	[kg/h]	MW			-	rt
Standardabweichung uc: Messergebnisse Zusammenfassung SOx Messung 1 bis 4 Massenkonzentrationen	[kg/h] als SO2: [mg/m ³ *]	MW 39,8	n.n.	78,4	MW = Mittelwert	
Standardabweichung uc: Messergebnisse Zusammenfassung SOx Messung 1 bis 4 Massenkonzentrationen	[kg/h] als SO2: [mg/m ³ *]	MW 39,8 2,00	n.n.	78,4 3,34	MW = Mittelwert MIN = Minimalwe MAX = Maximalw n.n. = kleiner Bes	ert timmungsgrenze
Standardabweichung uc: Messergebnisse Zusammenfassung SOx Messung 1 bis 4 Massenkonzentrationen	[kg/h] als SO2: [mg/m ³ *]	MW 39,8	n.n.	78,4	MW = Mittelwert MIN = Minimalwe MAX = Maximalw n.n. = kleiner Bes	ert dimmungsgrenze echnung erfolgt mit

**) Normzustand (feucht), (273 K; 1013 hPa)

7.3 Grafische Darstellung der zeitlichen Verläufe kontinuierlich gemessener Komponenten

Seite 40 von 40 Zeichen/Erstelldatum: IS-US1-MAN/No / 22.10.2024 Berichtsnummer: 3917201_Sokalan-Fabrik_Nord_EMI_2024.docx

7.4 Hausverfahren

nicht relevant

Bericht über die Durchführung von Emissionsmessungen

Betreiber: BASF SE

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Anlage: N-Salze-Fabrik (Anlagen-Nr. 25.01)

Standort der Anlage: BASF SE

Bau N 310

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Art der Messung: Wiederkehrende Emissionsmessung gemäß

§ 28 BlmSchG an genehmigungsbedürftigen

Anlagen

Aufgabenstellung: Emissionsmessungen in der Abluft der

Emissionsquellen: A 003, A 004(Abgasteilstrom

56) und A 005

Ausführendes Messinstitut:

bekannt gegebene Messstelle nach

§ 29b BlmSchG

DAkkS Akkreditierung als Prüflabor Modul

Immissionsschutz D-PL-12088-02

SGS-TÜV Saar GmbH

Schwanheimer Ufer 302

60529 Frankfurt

Messkomponenten: Abgasrandbedingungen, Stickstoffoxide

Projekt-Nr.: 7000536.50

Auftrag Nr.: 1086915420 vom 04.04.2024

Datum der Messung: 30.07.2024

Berichtsdatum: 09.01.2025

Berichtsumfang: 18 Seiten

Anhang: 8 Seiten

Revision: A

SGS-TOV Saar GmbH | Am TÜV 1 D-66280 Sulzbach | t+49 6897 506 - 60 | f+49 6897 506 - 102 | www.sgs-tuev-saar.com

Member of the SGS Group

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Seite 2 von 18

Zusammenfassung

Betreiber: BASF SE

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Standort der Anlage: BASF SE

N-Salze-Fabrik (Anlagen-Nr. 25.01)

Bau N 310

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Anlage: Genehmigungsbedürftige Anlage gemäß § 4 BlmSchG in

Verbindung mit Ziffer 4.1.15 G/E des Anhangs 1 der 4. BlmSchV.

Datum der Messung: 30.07.2024

Emissionsquelle: A 003, A 004 (Abgasteilstrom 56), A 005

Messergebnisse

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A003	Stickstoffoxide (angeg. als NO2)	mg/m³	6,7	4	10	80	ja
	Stickstoffoxide (angeg. als NO2)	mg/m³	<5,5	<3	<9	350	ja
Δ005	Stickstoffoxide (angeg. als NO2)	mg/m³	6,5	4	10	80	ja

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K).

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025

Seite 3 von 18

Inhalts	sverzeichnis	Seite
1.	Messaufgabe	4
1.1	Auftraggeber	4
1.2	Betreiber	4
1.3	Standort	4
1.4	Anlage	4
1.5	Datum der Messung	4
1.6	Anlass der Messung	4
1.7	Aufgabenstellung	5
1.8	Messkomponenten und Messgrößen	5
1.9	Ortsbesichtigung vor Messdurchführung	5
1.10	Messplanabstimmung	5
1.11	An der Messung beteiligte Personen	6
1.12	Beteiligung weiterer Institute	6
1.13	Stelly, fachlich Verantwortlicher	4 5 5 5 5 6 6 6 6
2.	Beschreibung der Anlage und der gehandhabten Stoffe	7
2.1	Bezeichnung der Anlage	7
2.2	Beschreibung der Anlage	7
2.3	Beschreibung der Emissionsquellen nach Betreiberangaben	7
2.4	Angabe der laut Genehmigungsbescheid mögliche Einsatzstoffe	7
2.5	Betriebszeiten nach Betreiberangaben	7
2.6	Einrichtung zur Erfassung und Minderung der Emissionen	8
3. 3.1	Beschreibung der Probenahmestelle	9
3.2	Messstrecke und Messquerschnitt	10
	Lage der Messpunkte im Messquerschnitt	
4.	Mess- und Analysenverfahren	12
4.1	Abgasrandbedingungen	12
4.2	Automatische Messverfahren	14
4.3	Manuelle Messverfahren für gas- und dampfförmige Emissionen	15
4.4	Messverfahren für partikelförmige Emissionen	15
4.5	Besondere hochtoxische Abgasinhaltsstoffe	15
4.6	Geruchsemissionen	15
5.	Betriebszustand der Anlage während der Messungen	16
5.1	Produktionsanlage	16
5.2	Abgasreinigungsanlage	16
6.	Zusammenstellung der Messergebnisse und Diskussion	17
6.1	Beurteilung der Betriebsbedingungen während der Messungen	17
6.2	Messergebnisse	17
6.3	Messunsicherheiten	18
6.4	Diskussion der Ergebnisse	18
7.	Anhang	1
7.1	Mess- und Rechenwerte	1
7.2	Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten	7
8/9/3/	The state of the s	

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Seite 4 von 18

Messaufgabe

1.1 Auftraggeber

BASF SE Carl Bosch-Straße 38 67056 Ludwigshafen am Rhein

1.2 Betreiber

Entsprechend 1.1

Ansprechpartner:

Telefon: E-Mail:

1.3 Standort

BASF SE N-Salze-Fabrik (Anlagen-Nr. 25.01) Bau N 310 Carl Bosch-Straße 38 67056 Ludwigshafen am Rhein

1.4 Anlage

Genehmigungsbedürftige Anlage gemäß § 4 BlmSchG in Verbindung mit Ziffer 4.1.15 G/E des Anhangs 1 der 4. BlmSchV.

Hier: Anlage zur Herstellung von Stoffen oder Stoffgruppen durch chemische Umwandlung in industriellem Umfang, insbesondere zur Herstellung von Salzen wie Ammoniumchlorid,

Kaliumchlorat, Kaliumkarbonat, Natriumkarbonat, Perborat, Silbernitrat

1.5 Datum der Messung

Datum der Messung: 30.07.2024

Datum der letzten Messung: 29.03.2021 und 20.04.2021

Datum der nächsten Messung: 2027

1.6 Anlass der Messung

Dreijährig wiederkehrende Messung nach § 28 BlmSchG bei genehmigungsbedürftigen Anlagen.

Seite 5 von 18

1.7 Aufgabenstellung

Durchführung von Emissionsmessungen bei Normalbetrieb zur Überprüfung der Einhaltung der Emissionsbegrenzung an den Auslässen A 003, A 004 (Abgasteilstrom 56) und A 005 der N-Salze-Fabrik in Bau N 310 gemäß Genehmigungsbescheid vorn 31.07.2020 (Az. 4-151F.Bl, Stadt Ludwigshafen am Rhein). Unter anderem sind dort folgende Emissionsgrenzwerte festgelegt:

Berichtsdatum: 09.01.2025

Messkomponente	Grenzwert
Stickstoffoxide (Abgasteilstrom 56, Auslass A 004)	350 mg/m ³
Stickstoffoxide (Auslass A 003 und A 005)	80 mg/m ³

Die Angaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K).

1.8 Messkomponenten und Messgrößen

Emissionsquellen	Messkomponenten	Anzahl x Dauer, Art einer Einzelmessung	
A 003, A 004 (Abgasteilstrom 56)	Abgasrandbedingungen	begleitend über den Messzeitraum	
und A 005	Stickstoffoxide	3 x 0,5 h, Kontinuierlich	

1.9 Ortsbesichtigung vor Messdurchführung □ Ortsbesichtigung durchgeführt am □ zusätzlich wurde eine ausführliche Anlagenbeschreibung durch den Auftraggeber zur Verfügung gestellt. Der Bericht der vorhergehenden Messungen liegt vor. ☑ keine Ortsbesichtigung durchgeführt ☑ mit vorherigen Messungen an dieser Anlage befasst, Örtlichkeiten sind bekannt □ zusätzlich wurde eine ausführliche Anlagenbeschreibung durch den Auftraggeber zur Verfügung gestellt. Der Bericht der vorhergehenden Messungen liegt vor. 1.10 Messplanabstimmung Die Durchführung der Messungen wurde mit Hr. ■ vom Betreiber abgestimmt. Die erforderlichen Angaben wurden dem Landesamt für Umwelt Rheinland-Pfalz per E-Mail mitgeteilt.

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Seite 6 von 18

1.11 An der Messung beteiligte Personen

1.12 Beteiligung weiterer Institute

keine

Stelly, fachlich Verantwortlicher 1.13

Berichtsdatum: 09.01.2025 Seite 7 von 18

2. Beschreibung der Anlage und der gehandhabten Stoffe

2.1 Bezeichnung der Anlage

Entsprechend 1.4

2.2 Beschreibung der Anlage

2.2.1 Beschreibung der Produktionsanlagen gemäß Betreiber

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Emissionsquelle	Höhe über Grund	Austrittsflasche	UTM-Koordinaten	Bauausführung
A 003	17 m	0,283 m ²	32458261/5485478	Stahl, rund
A 004 20 m (Abgasteilstrom 56)		0,031 m²	32458281/5485468	Stahl, rund
A 005	17 m	0,283 m ²	32458267/5485486	Stahl, rund

2.4 Angabe der laut Genehmigungsbescheid mögliche Einsatzstoffe

2.5 Betriebszeiten nach Betreiberangaben

2.5.1 Gesamtbetriebszeiten

2.5.2 Emissionszeit nach Betreiberangaben

Identisch mit der Gesamtbetriebszeit der Anlage

Seite 8 von 18

2.6 Einrichtung zur Erfassung und Minderung der Emissionen

Berichtsdatum: 09.01.2025

2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Art der Emissionserfassung

Geschlossene Abgaskanäle

2.6.1.2 Ventilatorkenndaten

Emissionsquelle	A 003	A 004 Abgasteilstrom 56	A 005	
Anlage	Ventilator V 200 Ventilator V 201	Ventilator V 402	Ventilator V 400 Ventilator V 401	
Hersteller	Busch	Busch	Busch	
Тур	AB3	АЗ МА	AB 3 / SNC5	
Nennleistung	Jeweils 7.500 m³/h	2000 m³/h	Jeweils 7.500 m³/h	

2.6.2 Einrichtung zur Verminderung der Emissionen

Auslass	A 003	A 005	
Hersteller	BASF	BASF	
Тур	Multizyklon	Multizyklon	
Anzahl der Einzel- zyklone / Schaltung	2 x 2	2 x 2	
Zyklondurchmesser	1.250 mm	1.250 mm	
Art des Staubaustrages	kontinuierlich	kontinuierlich	
Wassereindüsung	3,5 m ³ /h	3,5 m ³ /h	
Wartungsintervall	monatlich	monatlich	
Letzte Wartung	26.06.2024	26.06.2024	

2.6.3 Einrichtung zur Verdünnung des Abgases

Entfällt

Seite 9 von 18

3. Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Emissionsquelle	Lage Abgaskanal	Höhe der Probenahmestelle	
A 003	vertikal	12 m, 2. OG	
A 004 (Abgasteilstrom 56)	vertikal	12 m, auf Dach 2. OG m	
A 005	vertikal	12 m, 2. OG	

Berichtsdatum: 09.01.2025

Emissionsquelle	Kanalabmes sung	Fläche Querschnitt	Einlaufstreck e	Auslaufstrecke	
A 003	0,6 m	0,283 m ²	8 m	5 m	
A 004 (Abgasteilstrom 56)	0,2 m	0,031 m ²	1,3 m	1,8 m	
A 005	0,6 m	0,283 m ²	8 m	5 m	

Empfehlungen nach DIN EN 15259

Emissionsquelle	Einlaufstrecke ≥ 5 dh	Auslaufstrecke ≥ 2 dh	Abstand bis zur Mündung ≥ 5 dh	
A 003	ja	ja	ja	
A 004 (Abgasteilstrom 56)	ja	ja	ja	
A 005	ja	ja	ja	

3.1.2 Arbeitsfläche und Messbühne

Emissionsquelle	Probenahme- stelle	Arbeitsplatz	Traversier- fläche	Wetterschutz
A 003	im freien	im freien	ausreichend	vorhanden
A 004 (Abgasteilstrom 56)	im freien	im freien	ausreichend	nicht vorhanden
A 005	im freien	im freien	ausreichend	vorhanden

Emissionsquelle	Arbeitsbühne	Zugang zur Probenahmestelle	Energie- versorgung	Wasser
A 003	A 003 nicht vorhanden		230 V	nicht relevant
A 004 Abgasteilstrom 56) nicht vorhanden		Treppen	230 V	nicht relevant
A 005	nicht vorhanden	Treppen	230 V	nicht relevant

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Seite 10 von 18

3.1.3 Messöffnungen

Emissionsquelle	Anzahl, Größe der Messöffnung	Gewinde	Anordnung	
A 003, A 005	Jeweils 1 x Ø = 55 mm	keine	-/-	
A 004 (Abgasteilstrom 56)	2 x Ø = 30 mm	keine	um 90° versetzt	

3.1.4 Strömungsbedingungen im Messquerschnitt

Emissionsquelle	Winkel Gasstrom zu Mittelachse	n zu Strömung geschwindigkeit		Verhältnis max. zu min. Geschwindigkeit
A 003	<15°	keine	ja	ja
A 004 (Abgasteilstrom 56)	<15° keine j		keine ja	ja
A 005	<15°	keine	ja	ja

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

An beide Emissionsquellen wurden die Messbedingungen nach DIN EN 15259 erfüllt.

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

Die Lage der Messpunkte im Messquerschnitt entspricht der DIN EN 15259.

Berichtsdatum: 09.01.2025

.2.2 Homoge	nitätsprüfung						
Emissionsquelle: A 00			Emissionsquelle: A 00)4			
Homogenitätsprüfur	ıg:		Homogenitätsprüfung:				
☐ durchgeführt (sie	ehe Ergebnisse in	n Nr. 6)	☐ durchgeführt (sie	ehe Ergebniss	e in Nr. 6)		
⊠ nicht durchgefüh	rt, weil:			rt, weil:			
☐ Fläche Mess	squerschnitt < 0,	1 m ²	☐ Fläche Mess	squerschnitt <	0,1 m ²		
Netzmessur	ng		☐ Netzmessur	ng			
☐ liegt vor			☐ liegt vor				
□ liegt vor □ Datum der Homogenitätsprüfung: Berichts-Nr.: Prüfinstitut: Ergebnis der Homogenitätsprüfung: □ Messung an einem beliebigen Punkt □ Messung an einem repräsentativen Punkt Beschreibung der Lage des repräsentativen Punkts: □ Netzmessung 3.2.3 Komponentenspezifische Darstellu		ınkt en Punkt ıtativen	Datum der Homogenitätsprüfung: Berichts-Nr.: Prüfinstitut: Ergebnis der Homogenitätsprüfung: Messung an einem beliebigen Punkt Messung an einem repräsentativen Punkt Beschreibung der Lage des repräsentativen Punkts: Netzmessung				
Emissionsquellen:	A 003, A 005	Anzahl der	Homogenitäts-	LUTE CANAL	60.00.00.00		
Messkomponente Anzani der Messpunkte		Messpunkte Messachse	je prüfung	Beliebiger Messpunkt	Repräsentativer Messpunkt		
Strömungs- geschwindigkeit	2	2					
Abgastemperatur	1	1					
Stickstoffoxide	2	2	П				

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt
Strömungs- geschwindigkeit	1	1			
Abgastemperatur	1	1			
Stickstoffoxide	1	1			

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Seite 12 von 18

4. Mess- und Analysenverfahren

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Messverfahren: DIN EN ISO 16911-1 Staudrucksonde (Typ L bzw. Typ S) in

Verbindung mit Mikromanometer

Hersteller: Airflow
Typ: PVM 620

Messbereich:

Letzte Überprüfung / Kalibrierung:

Kontinuierliche Ermittlung:

□ ja ☑ nein

Netzmessung:

- 3735 bis + 3735 Pa

02/2024 / jährlich

□ ja ☑ nein

1-Min-Mittelwert

3 Ablesungen innerhalb 1-Minute

4.1.2 Statischer Druck im Abgaskanal

Messverfahren: in Anlehnung an DIN EN ISO 16911-1

Mikromanometer unter Berücksichtigung der

entsprechenden Anschlüsse

Hersteller: Airflow
Typ: PVM 620

Messbereich:

Letzte Überprüfung / Kalibrierung:

Kontinuierliche Ermittlung:

- 3735 bis + 3735 Pa

02/2024 / jährlich

□ ja ⋈ nein

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messverfahren: Digital-Barometer

Hersteller: Airflow Lufttechnik GmbH

Typ: DB2

Messbereich: + 700 bis + 1100 hPa
Letzte Überprüfung / Kalibrierung: 02/2024 / ½ jährlich
Kontinuierliche Ermittlung: □ ja ⋈ nein

4.1.4 Abgastemperatur

Messverfahren: NiCr/Ni-Thermoelement mit elektronischer

Nullpunktkompensation

Hersteller: Fa. Ahlborn

Typ: ALME:MO 2690-8A

Messbereich: - 200 bis + 1100°C

Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich

Kontinuierliche Ermittlung: ⊠ ja □ nein

Auftrags-Nr. 7000536.50 Rev. A

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte) Messverfahren: Psychrometrische Feuchtemessung Zwei-Thermometermethode Hersteller: Fa. Ahlborn Ni-Cr-Ni Thermoelemente (Typ K) Typ: Messbereich: 0 bis 100 % rel. Feuchte 0 bis + 100 °C Einsatzbereich: Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich Kontinuierliche Ermittlung: ⊠ ja □ nein 4.1.6 **Abgasdichte** Berechnet unter Berücksichtigung der Abgastemperaturen und der Druckverhältnisse sowie der Abgasbestandteile an Sauerstoff (O2), Kohlendioxid (CO2), Rest als Stickstoff (N2) und der Abgasfeuchte (Wasserdampfanteil im Abgas)

Berichtsdatum: 09.01.2025

Seite 13 von 18

4.1.7 Abgasverdünnung

Entfällt

4.1.8 Volumenstrom

Ermittlungsmethode: Berechnet aus mittlerer Strömungsgeschwindigkeit

und Querschnittsfläche

mittlere Abgasgeschwindigkeit

Messverfahren: DIN EN ISO 16911-1

Messeinrichtung: siehe 4.1.1

Querschnittsfläche:

Ermittlungsverfahren: direkte Maßbestimmung

Messeinrichtung: Messstab

Fläche der Volumenstrommesseinrichtung

zu Querschnittsfläche < 5 %: ⊠ ja □ nein

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Seite 14 von 18

4.2 Automatische Messverfahren

4.2.1 Messkomponente Stickstoffoxide (NO_x angeg. als NO₂)

Messverfahren

Messprinzip: Chemilumineszenz Richtlinien: DIN EN 14792

Analysator 1

Hersteller / Typ: Horiba / PG-250 SRM

Gerät eignungsgeprüft: Ja, BAnz 38/09, 125/09, 24/10, 14/11, 113/11 Nachweisgrenze: 1 % vom Messbereichsendwert, lt. Hersteller

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Analysator 2

Hersteller / Typ: Horiba / PG-350 SRM

Gerät eignungsgeprüft: ja, BAnz AT. 05.03.2013 B10, Kap. I Nr. 5.2 Nachweisgrenze: 1 % vom Messbereichsendwert, It. Hersteller

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Eingestellter Messbereich

Eingestellter Messbereich: 0 – 100 / 250 ppm

Gerät eignungsgeprüft

□ Zertifizierung nach DIN EN 15267-4
 ⊠ Zertifizierung nach DIN EN 15267-3

☐ Eignungsprüfung auf Basis der BEP ohne Zertifizierung

☐ Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert

Probenahme und Probenaufbereitung

Entnahmesonde: Edelstahl, beheizt

Länge Sonde: 0,5 m
Partikelfilter: Quarzfilter

Probengasleitung vor Kühler 1: Teflon, beheizt auf 180°C, Länge 3 m

Messgaskühler 1 am Messort: M&C / PSS-5
Temperatur: geregelt auf 3°C
Probengasleitung nach Kühler 1: Teflon, Länge ca. 10 m
Messgaskühler 2 vor Analysator: M&C / CSS-V1

Temperatur: geregelt auf 3°C

Überprüfen von Null- und Referenzpunkt mit Prüfgasen

Nullgas: gereinigter Stickstoff

Prüfgas: 79,5 mol-ppm NO in N₂ / 214 mol-ppm NO in N₂

Hersteller / Datum: Linde AG, 22.08.2024 / 27.07.2023

Stabilitätsgarantie: 36 Monate

Rückführbar zertifiziert: ja

Aufgabe durch das gesamte

Probenahmesystem: ja

Auftrags-Nr. 7000536.50 Rev. A

Berichtsdatum: 09.01.2025

Seite 15 von 18

Einstellzeit des gesamten Messaufbaus

t_{90%}= ca. 33 s: Ermittlung mittels Stoppuhr bei druckloser

Prüfgasaufgabe an Probenahmesonde

Messwerterfassungssystem

Messwertregistrierung: Elektronische Datenerfassung

Hersteller: Endress & Hauser
Typ: Memograph M RSG40

Software: ReadWin 2000 Version: 1.27.5.0

Speicherzyklus: 1 s

Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich

Maßnahmen zur Qualitätssicherung

Jährliche Funktionskontrolle i.A. an DIN EN 14181

Justierung (Null- und Referenzpunkt) vor Messdurchführung

Prüfgasaufgabe am Analysator, anschließende

Prüfgasaufgabe an Entnahmesonde

Dichtigkeit ist bei Übereinstimmung der Messwerte gegeben.

Überprüfung (Null- und Referenzpunkt) nach erfolgter

Messdurchführung. Prüfung der Drift.

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

Entfällt

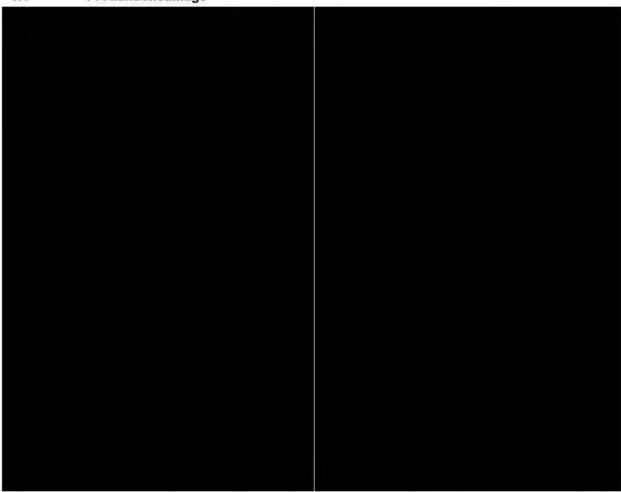
4.4 Messverfahren für partikelförmige Emissionen

Entfällt

4.5 Besondere hochtoxische Abgasinhaltsstoffe

Entfällt

4.6 Geruchsemissionen


Entfällt

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025

ichtsdatum: 09.01.2025 Seite 16 von 18

5. Betriebszustand der Anlage während der Messungen

5.1 Produktionsanlage

5.2 Abgasreinigungsanlage

Die Abgasreinigungsanlagen waren während des Beurteilungsintervalls in Betrieb. Abweichungen vom bestimmungsgemäßen Betrieb waren vor Ort nicht feststellbar.

Berichtsdatum: 09.01.2025 Seite 17 von 18

6. Zusammenstellung der Messergebnisse und Diskussion

6.1 Beurteilung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Messkomponente:

Stickstoffoxide (angeg. als NO2) [A003]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsb Konzentration [mg/m³]	
1	30.07.2024	10:55 - 11:24	6,7	0,0770	80	-
2	30.07.2024	11:25 - 11:54	6,4	0,0740	80	- 14
3	30.07.2024	12:00 - 12:29	6,1	0,0700	80	-
Mittelwert			6,4	0,0737		
Maximalwe	ert		6,7	0,0770	8.0	-

Messkomponente:

Stickstoffoxide (angeg. als NO2) [A004 Teilstrom 56]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
1	30.07.2024	11:25 - 11:54	<5,2	<0,0030	350	-
2	30.07.2024	11:55 - 12:24	<5,4	<0,0030	350	- 52
3	30.07.2024	12:25 - 12:54	<5,5	<0,0030	350	-
Mittelwert			<5,4	<0,0030		
Maximalwe	ert		<5,5	<0,0030	350	-

Messkomponente:

Stickstoffoxide (angeg. als NO2) [A005]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
1	30.07.2024	12:37 - 13:06	6,5	0,0820	80	-
2	30.07.2024	13:07 - 13:36	5,9	0,0750	80	
3	30.07.2024	13:37 - 14:06	5,4	0,0690	80	-
Mittelwert			5,9	0,0753		
Maximalwe	ert		6,5	0,0820	80	

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K)

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Seite 18 von 18

6.3 Messunsicherheiten

Emissions- quelle	Messkomponente	Einheit	Maximalwert Ymax	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A003	Stickstoffoxide (angeg. als NO2)	mg/m³	6,7	3,0	4	10	indirekter Ansatz
A004 Teilstrom 56	Stickstoffoxide (angeg. als NO2)	mg/m³	<5,5	3,02	<3	<9	indirekter Ansatz
A005	Stickstoffoxide (angeg. als NO2)	mg/m³	6,5	3,0	4	10	indirekter Ansatz

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K)

6.4 Diskussion der Ergebnisse

Frankfurt, den 09.01.2025

Die Plausibilitätsprüfung der Messergebnisse in Hinblick auf die Anlagenauslastung während des Messzeitraums, erfolgte durch Kontrolle der Produktionsabläufe und der im Leitstand angezeigten Betriebsparameter und ergab keine Abweichung von der bestimmungsgemäßen Betriebsführung der Anlage. Unter Berücksichtigung der Anlagenauslastung während der Messungen ergeben sich durch den Vergleich der Messergebnisse miteinander und der Betriebsweise der Anlage keinerlei Unstimmigkeiten. Die ermittelten Messergebnisse erscheinen im Hinblick auf die Betriebsbedingungen während des Messzeitraums und die Bedingungen der Probenahme als plausibel.

Stellv. fachlich Verantwortlicher Sachverständige

Berichtsdatum: 09.01.2025

Anhang Seite 1 von 8

7. Anhang

7.1 Mess- und Rechenwerte Auftraggeber: BASF SE Auftragsnummer: 7000536.50 Anlage: N-Salze N310 Messort: A003 Sachbearbeiter: Messtag: 30.07.2024 Uhrzeit von 10:30 bis 10:40 Messung Nr. Strömungsmessgerät Achsenanordnung Kanalabmessungen x Staurohr a (D)= 600 mm 99-032 Faktor 1,000 Nr b = mm 0,283 m² Anemometer A = Wandstärke = mm **Einteilung Messnetz** Anzahl Achsen Barometerstand Messstellenbeschreibung b₀= 1007 hPa Höhe Quelle = Anzahl Punkte 2 Fläche Quelle = m² Lage Kanal = vertikal Eintauch-Differenzdruck Stat. Tempe Strömungs-MP MP Höhe Messst. = tiefe [Pa] Druck ratur geschw. m [mm] M 2 [hPa] [m/:s] Einlaufstr. = m 1A 88 102 0,17 46,4 13.76 1 X Auslaufstr. = m 512 99 13,56 X Zahl Messöff. = 1A 2 Stk 110 Maß Messöff. = 2A 1 88 14,29 X mm 2 512 100 2A 13,62 X Feuchte 2-Thermometermethode Temperatur trocken = 46 °C Temperatur feucht = 34,2 °C relative Feuchte = 46,32 % absolute Feuchte = 0,04 kg/m3 i.N.tr. Feuchte = 4,64 Vol. % Dichte 20,56 Vol-% O₂ = 0,34 Vol-% $CO_2 =$ Rest = 79 10 % Dichte Betrieb = 1,07747 kg/m3 Mittelwerte 0,2 hPa P_{stat} = $t_{tr} =$ 46 °C 13,81 m/s w= Verhältnis w_{max}/w_{min} 1,1/1 Volumenströme Betrieb = 14070 m3/h Norm, feucht = 11972 m3/h Norm, trocken = 11416 m3/h Sondengröße Absaugerate 2.8 m³/h berechnet 8.32 mm Blendenkonstante gewählt mm $T_{BI}[K] \cdot d_{Duse}^{4}[cm] \cdot w^{2}[\frac{m}{s}]$ PBlabs [hPa] Blendenfaktor

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Anhang Seite 2 von 8

Auswertung kontinuierlich erfasster Komponenten hier Stickstoffoxide [NOx angeg. als NO2]

Auftraggeber: BASF SE

Berichtsnummer: 7000536.50

Anlage: N-Salze N310

Messort: A 003

Messkomponente: Stickstoffoxide [NOx angeg. als NO2]

PM-Nr. des Analysators: 541-23-013

Messung-Nr.	8	1	2	3		
Datum		30.07.24	30.07.24	30.07.24		
Uhrzeit		10:55 - 11:24	11:25 - 11:54	12:00 - 12:29		
Barometerstand	[hPa]	1007	1007	1007		
Temperatur Abgas	[°C]	46	46	46		
Feuchte Abgas	[Vol-%]	4,64	4,64	4,64		
Abgasreinigung vorhanden		Nein	Nein	Nein		
Sauerstoffgehalt	[Vol-%]	20,61	2:0,61	20,72		
Volumenstrom im Normzustand	[m³/h]	11.416	11.416	11.416		

Ergebnisse

Messwert	[mg/m³]	6,8	6,6	6,3	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	6,7	6,5	6,1	
Massenstrom	[kg/h]	0,077	0,074	0,070	
Gesamtmessunsicherheit	[mg/m³N,tr]	3,00	3,00	3,00	

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

Bewertung der Drif	t		Werte wurden korrigiert
Drift max. abs. [%]			2,88
Messende	Endpunkt	14:14	158,88
Ablesewert nach	Nullpunkt	30.07.24	0,59
Messbeginn	Endpunkt	10:40	162,98
Einstellwert vor	Nullpunkt	30.07.24	0,00

	Eingese	tztes Prüfgas	
S	tickstoffoxide [NOx angeg, als NO2]	
Prüfgaskor	nzentration	Flaschen-	Haltbar
Sollwert	Einheit	nummer	bis
162,975	mg/m³	27631122520630	08 / 2026

Auftrags-Nr. 7000536.50 Rev. A

uftr	agsnu	mmer 700	0536	50							
	ge:		alze N								
	sort:	-			hnas	teilstror	n 56	-			
	bearb	1,000		, ,	gus	.onoti Ol		-			
	stag:		30.07	202	1	Uhrzeit	von	11:10 bis	11:15	Me	essung Nr. 1
00.	rug.	_	00.01	LUL		Cincon	,	11.10	1.1.10	7	obung m
		smessger	ät				Achsen	anordnung		Kanalabme	
	Staure			00	000					a (D)=	200 mm
	aktor	1,000 ometer	Nr.	99-	033		10	\wedge Γ		b = A =	0,031 m²
-	Anem	ometer					17) b		Wandstärke =	mm
nte	eilung	Messnetz					X		a	; vunustanto –	uniti
	zahl Ad	And the second second]			Barom	eterstar				nbeschreibung
An	zahl P	unkte 1]			$b_0 =$	1008	hPa		Höhe Quelle = 1	
		Fishers	I Dist		Inches In		-	Di-V		Fläche Quelle =	0,1256 m²
Sellou	MP	Eintauch- tiefe	Diffe	renzo [Pa]	lruck	Stat. Druck	Tempe- ratur	Strömungs- geschw.	MP	Lage Kanal = v Höhe Messst. =	1,3 m
٤	IVIE	[mm]	Mi		М3		[°C]	[m/s]	ivie	Einlaufstr. =	1,3 m
Α	1	100	25	IVI Z	WIS	1,30	60,3	6,91	х	Auslaufstr. =	1,8 m
								36.0		Zahl Messöff. =	2 Stk
	==1									Maß Messöff. =	20 mm
Ц										20.7.00	
										Feuchte 0.75	
-		_	+							2-Thermome Temperatur trocken =	etermetnode 60 °C
Ħ	-		-				-	+		Temperatur feucht =	50,4 °C
H										Tameside Same 1	50,,,
Ц											
										relative Feuchte =	60,29 %
4	-									absolute Feuchte =	0,11 kg/m³ i.N.
-	-			-				-		Feuchte =	11,9 Vol. %
										1	
1										0.0	
										<u>Dichte</u>	12000
										O ₂ =	19 Vol-% 9,1 Vol-%
-	-									CO ₂ = Rest =	71,90 %
			+					-		Dichte Betrieb =	1,04855 kg/m³
								-		Diditio Dollioo	i,o iooo ngiii
										The second of	
										Mittelwerte	1240
										p _{stat} =	1,3 hPa 60 °C
-/										t _{tr} =	
-		-	-			-				w = Verhältnis w _{max} /w _{min}	6,91 m/s
								•		· · · · · · · · · · · · · · · · · · ·	
									-	Volumenstr	röme
ij									7	Betrieb =	771 m³/h
1										Norm, feucht =	630 m³/h
				1						Norm, trocken =	555 m³/h
- 14										Condonario	
										Sondengröße Absaugerate	2,8 m³/h
			_	-	_				-	berechnet	11,97 mm
		Acres (Sec.)	enden							gewählt	mm

Berichtsdatum: 09.01.2025

Anhang Seite 3 von 8

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Anhang Seite 4 von 8

Auswertung kontinuierlich erfasster Komponenten hier Stickstoffoxide [NOx angeg. als NO2]

Auftraggeber: BASF SE

Berichtsnummer: 7000536.50

Anlage: N-Salze N310

Messort: A 004

Messkomponente: Stickstoffoxide [NOx angeg. als NO2]

PM-Nr. des Analysators: 541-23-012

Messung-Nr.		1	2	3	-	
Datum		30.07.24	30.07.24	30.07.24		
Uhrzeit		11:25 - 11:54	11:55 - 12:24	12:25 - 12:54		
Barometerstand	[hPa]	1008	1008	1008		
Temperatur Abgas	[°C]	60	60	60		
Feuchte Abgas	[Vol-%]	11,90	11,90	11,90		
Abgasreinigung vorhanden		Nein	Nein	Nein		
Sauerstoffgehalt	[Vol-%]	20,44	20,39	20,40	- 1	
Volumenstrom im Normzustand	[m³/h]	555	555	555		

Ergebnisse

Messwert	[mg/m³]	< 5,0	< 5,0	< 5,0	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	< 5,2	< 5,4	< 5,6	
Massenstrom	[kg/h]	< 0,003	< 0,003	< 0,003	
Gesamtmessunsicherheit	[mg/m³N,tr]	3,02	3,02	3,02	

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

Bewertung der Dri	Werte wurden korrigiert		
Drift max. abs. [%]			1,26
Messende	Endpunkt	13:00	432,55
Ablesewert nach	Nullpunkt	30.07.24	-0,62
Messbeginn	Endpunkt	10:57	438,70
Einstellwert vor	Nullpunkt	30.07.24	0,00

		tes Prüfgas		
Labour Life.		Ox angeg. als NO2	70.007	
Prüfgaskor	nzentration	Flaschen-	Haltbar	
Sollwert	Einheit	nummer	bīs	
438,7	mg/m³	2746194	07 / 2026	

age: ssort: shbearb sstag: brand Staur Faktor Anem hzahl A	A00s	alze N: 5 30.07	310 .2024	032	Barom b ₀ =		anordnung b	11:30 a	Kanalabmess a (D)= b = A = Wandstärke = Messstellent Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	600 mm mm 0,283 m² mm ceschreibung m m² tikal m m
ssort: chbearb sstag: Smunq Staur Faktor Anem Anzahl A nzahl F	smessgera ohr 1,000 nometer Messnetz chsen 2 unkte 2 Eintauchtiefe [mm] 88 512 88	30.07. at Nr. Differ M 1 120 131 126	.2024 99-0	032	Barom b ₀ =[Stat. Druck [hPa]	eterstar 1007 Tempe- ratur [°C]	anordnung b nd hPa Strömungs- geschw. [m/s] 14,85	a	Kanalabmess a (D)= b = A = Wandstärke = Messstellent Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	sungen 600 mm mm 0,283 m² mm ceschreibung m m² tikal m m
shbearb sstag: Staur Faktor Anem teilung nzahl A nzahl F	smessgera ohr 1,000 nometer Messnetz chsen 2 Punkte 2 Eintauchtiefe [mm] 88 512 88	30.07 at Nr. Differ M 1 120 131 126	99-(032	Barom b ₀ =[Stat. Druck [hPa]	eterstar 1007 Tempe- ratur [°C]	anordnung b nd hPa Strömungs- geschw. [m/s] 14,85	a	Kanalabmess a (D)= b = A = Wandstärke = Messstellent Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	sungen 600 mm mm 0,283 m² mm ceschreibung m m² tikal m m
Sstag: Staur Staur Faktor Anem teilung nzahl Anzahl F	smessqera rohr 1,000 nometer Messnetz chsen 2 Punkte 2 Eintauch- tiefe [mm] 88 512 88	Differ M 1 120 131 126	99-(032	Barom b ₀ =[Stat. Druck [hPa]	eterstar 1007 Tempe- ratur [°C]	anordnung b nd hPa Strömungs- geschw. [m/s] 14,85	a	Kanalabmess a (D)= b = A = Wandstärke = Messstellent Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	sungen 600 mm mm 0,283 m² mm ceschreibung m m² tikal m m
Staur Staur Faktor Anem teilung nzahl A nzahl F	intauchtiefe [mm] 88 512 88	Differ M 1 120 131 126	99-(032	Barom b ₀ =[Stat. Druck [hPa]	eterstar 1007 Tempe- ratur [°C]	anordnung b nd hPa Strömungs- geschw. [m/s] 14,85	a	Kanalabmess a (D)= b = A = Wandstärke = Messstellent Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	sungen 600 mm mm 0,283 m² mm ceschreibung m m² tikal m m
Staur Faktor Anem teilung nzahl A nzahl F	intauchtiefe [mm] 88 512 88	Nr. Differ M 1 120 131 126	renzd [Pa]	ruck	Barom b ₀ = Stat. Druck [hPa]	eterstar 1007 Tempe- ratur [°C]	hPa Strömungs- geschw. [m/s] 14,85	MP	a (D)= b = A = Wandstärke = Wessstellent Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	600 mm mm 0,283 m² mm ceschreibung m m² tikal m m
Faktor Anem teilung nzahl A nzahl F MP	1,000 nometer Messnetz chsen 2 Punkte 2 Eintauchtiefe [mm] 88 512 88	Differ M 1 120 131 126	renzd [Pa]	ruck	b ₀ = Stat. Druck [hPa]	Tempe- ratur [°C]	strömungs- geschw. [m/s]	MP	Messstellent Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	mm 0,283 m² mm peschreibung m m² tikal m m
Anemateilung nzahl Anzahl F	Messnetz chsen 2 Punkte 2 Eintauchtiefe [mm] 88 512 88	Differ M 1 120 131 126	renzd [Pa]	ruck	b ₀ = Stat. Druck [hPa]	Tempe- ratur [°C]	strömungs- geschw. [m/s]	MP	A = Wandstärke = Messstellent Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	0,283 m² mm peschreibung m m² tikal m m
mzahl Anzahl F	chsen 2 Cunkte 2 Eintauchtiefe [mm] 88 512 88	Differ M 1 120 131 126	[Pa]		b ₀ = Stat. Druck [hPa]	Tempe- ratur [°C]	strömungs- geschw. [m/s]	MP	Wandstärke = Messstellent Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	mm peschreibung m m² tikal m m
MP 1 2 1	chsen 2 Punkte 2 Eintauchtiefe [mm] 88 512 88	Differ M 1 120 131 126	[Pa]		b ₀ = Stat. Druck [hPa]	Tempe- ratur [°C]	hPa Strömungs- geschw. [m/s] 14,85	MP	Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	m m² tikal m m
MP	Eintauch- tiefe [mm] 88 512 88	M 1 120 131 126	[Pa]		b ₀ = Stat. Druck [hPa]	Tempe- ratur [°C]	hPa Strömungs- geschw. [m/s] 14,85		Höhe Quelle = Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	m m² tikal m m
MP 1 2 1	Eintauch- tiefe [mm] 88 512 88	M 1 120 131 126	[Pa]		Stat. Druck [hPa]	Tempe- ratur [°C]	Strömungs- geschw. [m/s] 14,85		Fläche Quelle = Lage Kanal = ver Höhe Messst. = Einlaufstr. =	m² tikal m m
1 2 1	tiefe [mm] 88 512 88	M 1 120 131 126	[Pa]		Druck [hPa]	ratur [°C]	geschw. [m/s] 14,85		Lage Kanal = ver Höhe Messst. = Einlaufstr. =	tikal m m m
1 2 1	tiefe [mm] 88 512 88	M 1 120 131 126	[Pa]		Druck [hPa]	ratur [°C]	geschw. [m/s] 14,85		Höhe Messst. = Einlaufstr. =	m m
1 2 1	[mm] 88 512 88	M 1 120 131 126		M 3	[hPa]	[°C]	[m/s] 14,85		Einlaufstr. =	m
2	88 512 88	120 131 126					14,85	Х		
1	88	126					15.51		Auslaufstr. =	m
						A		Х	Zahl Messöff. =	Stk
2	512	127					15,21	Х	Maß Messöff. =	mm
							15,28	Х	Equalita	
									Feuchte 2-Thermomete	ermethode
							-		Temperatur trocken =	42 °C
									Temperatur feucht =	35,9 °C
									Entry Commencer	
									relative Feuchte =	67,6 %
							-		absolute Feuchte = Feuchte =	0,05 kg/m³ i.N.tr. 5,51 Vol. %
1							*		i eucite -	3,31 VOI. 70
						9 4				
0.1				1-1		7-17	1 - 7 - 4	- "1		
									Dichte	** ****
									O ₂ = CO ₂ =	20,42 Vol-% 0,39 Vol-%
									Rest =	79,19 %
1					-					1,08858 kg/m ³
										112 - 13 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
									Mittelwerte	44.55
									$p_{stat} = t_{tr} =$	1,1 hPa 42 °C
4							_		ι _{tr} w =	15,21 m/s
			-						Verhältnis w _{max} /w _{min}	1,0 / 1
1						5 == 1	-		max mill	436
									Volumenströr	me
									Betrieb =	15496 m³/h
									Norm, feucht =	13365 m³/h
									Norm, trocken =	12629 m³/h
X -									Sandanaräßa	
						4	- 1		Sondengröße Absaugerate	2,8 m³/h
+-			-					-	berechnet	7,99 mm

Auftrags-Nr. 7000536.50 Rev. A Berichtsdatum: 09.01.2025 Anhang Seite 6 von 8

Auswertung kontinuierlich erfasster Komponenten hier Stickstoffoxide [NOx angeg. als NO2]

Auftraggeber: BASF SE

Berichtsnummer: 7000536.50

Anlage: N-Salze N310

Messkomponente: Stickstoffoxide [NOx angeg. als NO2]

PM-Nr. des Analysators: 541-23-013

Messung-Nr.		1	2	3	1	
Datum		30.07.24	30.07.24	30.07.24		
Uhrzeit		12:37 - 13:06	13:07 - 13:36	13:37 - 14:06		
Barometerstand	[hPa]	1007	1007	1007		
Temperatur Abgas	[°C]	42	42	42		
Feuchte Abgas	[Vol-%]	5,51	5,51	5,51		
Abgasreinigung vorhanden		Nein	Nein	Nein		
Sauerstoffgehalt	[Vol-%]	20,19	2:0,53	20,53		
Volumenstrom im Normzustand	[m³/h]	12.629	1:2.629	12.629		

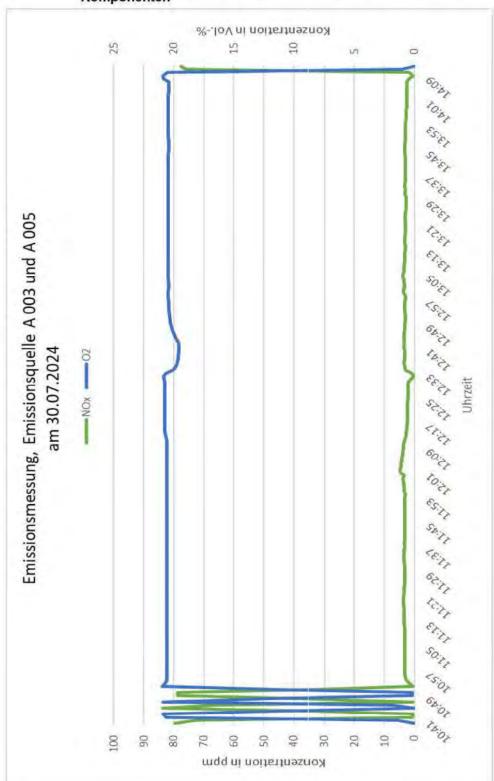
Ergebnisse

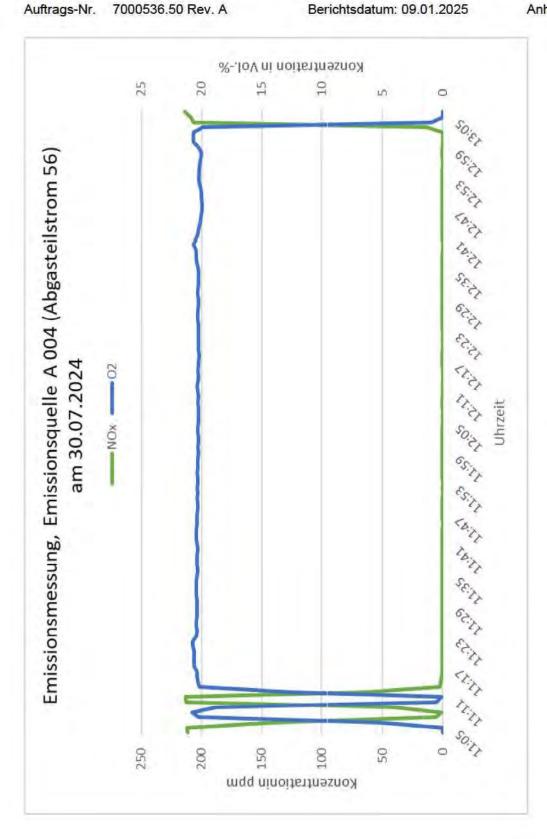
Messort:

Messwert	[mg/m³]	6,8	6,3	5,9	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	6,5	5,9	5,5	
Massenstrom	[kg/h]	0,082	0,075	0,069	
Gesamtmessunsicherheit	[mg/m³N,tr]	3,00	3,00	3,00	

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

Bewertung der Drif	t		Werte wurden korrigiert	
Drift max. abs. [%]			2,88	
Messende	Endpunkt	14:14	158,88	
Ablesewert nach	Nullpunkt	30.07.24	0,59	
Messbeginn	Endpunkt	30.07.24 14:14	162,98	
Einstellwert vor	nstellwert vor Nullpunkt		0,00	


		tztes Prüfgas		
S	tickstoffoxide [NOx angeg. als NO2]	- Va	
Prüfgaskor	nzentration	Flaschen-	Haltbar	
Sollwert	Einheit	nummer	bis	
162,975	mg/m³	27631122520630	08 / 2026	


Auftrags-Nr. 7000536.50 Rev. A

Berichtsdatum: 09.01.2025

Anhang Seite 7 von 8

7.2 Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten

Bericht über die Durchführung von Emissionsmessungen

Betreiber: BASF SE

D-67056 Ludwigshafen am Rhein

Kaurefix-Fabrik: Bau R 410 und Bau S 421 (Anlagen-Anlage:

Nr. 04.03)

Standort der Anlage: BASF SE

Bau B 219

Carl-Bosch-Straße 38 67056 Ludwigshafen

Erstmalige Emissionsmessung gemäß § 28 BlmSchG Art der Messung:

an genehmigungsbedürftigen Anlagen

Aufgabenstellung: Emissionsmessungen im Reingas der Quellen A 017.

A 079, A 053, A 080, A 082, A 084 (Bau R410) und A

010 und A 017 (Bau S 421)

Ausführendes Messinstitut:

bekannt gegebene Messstelle nach

§ 29b BlmSchG

DAkkS Akkreditierung als Prüflabor Modul

Immissionsschutz D-PL-12088-02

SGS-TÜV Saar GmbH Schwanheimer Ufer 302

60529 Frankfurt

Abgasrandbedingungen, Gesamtkohlenstoff, Messkomponenten:

Gesamtstaub, Ammoniak, Formaldehyd, Methanol,

Mono-Ethanolamin.

Auftrag Nr.: 1086869209 vom 12.10.2022

Projekt-Nr.: 6367155.40

24.01.2024 - 25.01.2024, 20.03.2024 - 21.03.2024 Datum der Messung:

Berichtsdatum: 02.10.2024

Berichtsumfang: 34 Blatt

39 Blatt Anhang:

Revision:

S6S-TUV Sear Growth Am TÜV 1 D-66280 Sulzbach t+49 6897 506 - 60 f+49 6897 506 - 102 www.sgs-tuev-saar.com

Dieses Dokument wurde von der Gesellschaft im Rahmen über Allgemeinen Geschliftsbedingungen für Dienstleistungen erstellt, die auf Anfrege erhöltlich sind. Es wird ausdrücklich auf die darin erchalteren Regelungen zur Höftungsbeschränkung, Freisfallung und zum Gerichtes

Bericht vom 02.10.2024

Blatt 2 von 34

Zusammenfassung

Betreiber: BASF SE

67056 Ludwigshafen

Standort der Anlage: BASF SE Werk Ludwigshafen

Kaurefix-Fabrik (Anlagen-Nr. 04.03) Werksgelände, Bau R 410, Bau S 421

67056 Ludwigshafen

Anlage: Genehmigungsbedürftige Anlage gemäß § 4 BImSchG in

Verbindung mit Ziffer 4.1.8 G/E des Anhangs 1 zur 4. BImSchV (Anlagen zur Herstellung von Kunst-stoffen wie Kunstharze, Polymere, Chemiefasern und Fasern auf Zellstoffbasis durch

chemische Umwandlung in industriellem Umfang)

Datum der Messung: 24.01.2024 - 25.01.2024, 20.03.2024 - 21.03.2024

Messergebnisse

Quelle A 017, Bau R 410

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 017	Gesamtkohlenstoff	mg/m³	285,7	279	292	50	Ja
A 017	Formaldehyd	mg/m³	83,6	76	92	10	Ja
A 017	Ammoniak	mg/m³	0,03	0,0	0,0	30	Ja
A 017	Methanol	mg/m³	879,3	794	965	20	Ja
A 017	Mono-Ethanolamin	mg/m³	<0,1	<0,1	<0,1	20	Ja

Im Rahmen der Messkampagne wurden die maximalen Emissionen messtechnisch erfasst (weitere Details siehe Punkt 6.4)

Quelle A 053, Bau R 410

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 053	Gesamtkohlenstoff	mg/m³	2,4	1	4	50	Ja
A 053	Formaldehyd	mg/m³	0,09	0,1	0,1	10	Ja
A 053	Methanol	mg/m³	4,1	4	5	20	Ja
A 053	Mono-Ethanolamin	mg/m³	<0,1	<0,1	<0,1	20	Ja

Quelle A 079, Bau R 410

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 079	Gesamtkohlenstoff	mg/m³	111,1	109	114	50	Ja
A 079	Formaldehyd	mg/m³	0,4	0,4	1	10	Ja
A 079	Ammoniak	mg/m³	0,4	0,4	0,4	30	Ja
A 079	Methanol	mg/m³	0,1	0,1	0,1	20	Ja

Über den gesamten Messzeitraum liegen die mittleren Konzentrationen bzgl. Gesamtkohlenstoff bei 34,3 mg/m³

Quelle A 080, Bau R 410

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	hochster
A 080	Staub	mg/m³	<0,3	<0,2	<0,4	20	Ja

Quelle A 082, Bau R 410

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 082	Staub	mg/m³	<0,3	<0,2	<0,4	20	Ja

Quelle A 084, Bau R 410

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	höchster
A 084	Staub	mg/m³	<0,4	<0,3	<1	20	Ja

Quelle A 010, Bau S 421:

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 010	Gesamtkohlenstoff	mg/m³	3,7	3	5	50	Ja
A 010	Formaldehyd	mg/m³	0,4	0,4	1	10	Ja
A 010	Methanol	mg/m³	5,6	5	6	20	Ja

Quelle A 017, Bau S 421:

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 017	Gesamtkohlenstoff	mg/m³	4,9	3	6	50	Ja
A017	Formaldehyd	mg/m³	1,1	1	1	10	Ja
A017	Methanol	mg/m³	22,6	20	25	20	Ja

Über den gesamten Messzeitraum liegen die mittleren Konzentrationen bzgl. Methanol bei 8,8 mg/m³

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K)

Inhalt	sverzeichnis	Seite
1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12	Messaufgabe Auftraggeber Betreiber Standort Anlage Datum der Messungen Anlass der Messungen Aufgabenstellung Messkomponenten und Messgrößen Ortsbesichtigung vor Messdurchführung Messplanabstimmung An der Messung beteiligte Personen Beteiligung weiterer Institute Stellv. Fachlich Verantwortlicher	5 5 5 5 5 5 5 5 5 5 5 5 5 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2. 2.1 2.2 2.3 2.4 2.5 2.6	Beschreibung der Anlage und der gehandhabten Stoffe: Bezeichnung der Anlage Beschreibung der Anlage Beschreibung der Emissionsquellen nach Betreiberangaben Angabe der It. Genehmigungsbescheid möglichen Einsatzstoffe Betriebszeiten nach Betreiberangaben Einrichtung zur Erfassung und Minderung der Emissionen	9 9 10 10 10
3. 3.1 3.2	Beschreibung der Probenahmestelle Messstrecke und Messquerschnitt Lage der Messpunkte im Messquerschnitt	13 13 15
4. 4.1 4.2 4.3 4.4 4.5 4.6	Mess- und Analysenverfahren Abgasrandbedingungen Automatische Messverfahren Manuelle Messverfahren für gas- und dampfförmige Emissionen Messverfahren für partikelförmige Emissionen Besondere hochtoxische Abgasinhaltsstoffe Geruchsemissionen	18 20 21 24 25 25
5. 5.1 5.2	Betriebszustand der Anlage während der Messungen Produktionsanlage Abgasreinigungsanlage	26 26 26
6. 6.1 6.2 6.3 6.4	Zusammenstellung der Messergebnisse und Diskussion Bewertung der Betriebsbedingungen während der Messungen Messergebnisse Messunsicherheiten Diskussion der Ergebnisse	27 27 27 33 34
7. 7.1 7.2	Anhang Mess- und Rechenwerte Grafische Darstellung des zeitl. Verlaufs kontinuierlich gemessener Komponenten	1 1 35

Bericht vom 02.10.2024

Blatt 5 von 34

Messaufgabe

1.1 Auftraggeber

BASF SE 67056 Ludwigshafen

1.2 Betreiber

BASF SE 67056 Ludwigshafen

Ansprechpartner: Telefon:

E-Mail:

1.3 Standort

BASF SE Werk Ludwigshafen Kaurefix-Fabrik (Anlagen-Nr. 04.03) Werksgelände, Bau R 410, Bau S 421 67056 Ludwigshafen

1.4 Anlage

Genehmigungsbedürftige Anlage gemäß § 4 BlmSchG in Verbindung mit § 1 und Ziffer 4.1.8 G/E des Anhangs zur 4. BlmSchV .

Hier: Anlagen zur Herstellung von Kunst-stoffen wie Kunstharze, Polymere, Chemiefasern

und Fasern auf Zellstoffbasis durch chemische Umwandlung in industriellem Umfang

1.5 Datum der Messungen

Datum der Messung: 24.01.2024 - 25.01.2024, 20.03.2024 - 21.03.2024

Datum der letzten Messung: Erstmessung

Datum der nächsten Messung: 2025

1.6 Anlass der Messungen

Erstmalige Messung nach § 28 BlmSchG bei genehmigungsbedürftigen Anlagen

1.7 Aufgabenstellung

Emissionsmessungen im Reingas der Emissionsquellen A 017, A 079, A 053, A 080, A 082, A 084, A 010 und a 017 der Kaurefix-Fabrik im Bau R 410 und S 421 gemäß der Anordnung vom 29.03.2022, Az. 23/05/5.1/2022/0026/DAU, der SGD Süd.

In der genannten Anforderung sind folgende Grenzwerte formuliert:

E	missionsqu	ellen im Ba	u R 410		
Messkomponente	Einheit	A 017	A 053	A 079	A 080 A 082 A 084
Organische Stoffe, angegeben als Gesamtkohlenstoff	[mg/m³]	50	50	50	-/-
Gesamtstaub	[mg/m³]	20	-/-	-/-	20
Org. Stoffe KI. 1-Stoffe z. B. Methanol	[mg/m³]	20	20	20	-/-
Org. Stoffe KI. 1-Stoffe z.B. Mono-Ethanolamin	[mg/m³]	20	20	-/-	
Formaldehyd	[mg/m³]	10	10	10	
Ammoniak	[mg/m³]	30	-/-	30	

Emissionsquellen im Bau S 421					
Messkomponente	Einheit	A010 und A 017			
Organische Stoffe, angegeben als Gesamtkohlenstoff	[mg/m³]	50			
Org. Stoffe Kl. 1-Stoffe z. B. Methanol	[mg/m³]	20			
Formaldehyd	[mg/m ³]	10			

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K)

An den über den Auslass A 017, Bau R 410, emittierenden Anlagen, finden aktuell keine Arbeitsprozesse mit partikelförmigen Komponenten statt. Die Messung von Gesamtstaub wurde daher an diesem Auslass nicht durchgeführt.

1.8 Messkomponenten und Messgrößen

	Messkomponenten	Anzahl x Dauer, Art einer Einzelmessung	
	Abgasrandbedingungen	begleitend über den Messzeitraum	
A 017, Bau R	org. Verbindungen angegeben als Gesamtkohlenstoff	3 x 0,5 h, kontinuierlich	
410	Methanol*	3 x 0,5 h, diskontinuierlich	
	Mono-Ethanolamin*	3 x 0,5 h, diskontinuierlich	
	Formaldehyd	3 x 0,5 h, diskontinuierlich	
	Ammoniak	3 x 0,5 h, diskontinuierlich	

	Messkomponenten	Anzahl x Dauer, Art einer Einzelmessung	
	Abgasrandbedingungen	begleitend über den Messzeitraum	
A 053, Bau R 410	org. Verbindungen angegeben als Gesamtkohlenstoff	3 x 0,5 h, kontinuierlich	
	Methanol*	3 x 0,5 h, diskontinuierlich	
	Mono-Ethanolamin*	3 x 0,5 h, diskontinuierlich	
	Formaldehyd	3 x 0,5 h, diskontinuierlich	

	Messkomponenten	Anzahl x Dauer, Art einer Einzelmessung	
	Abgasrandbedingungen	begleitend über den Messzeitraum	
A 079, Bau R 410	org. Verbindungen angegeben als Gesamtkohlenstoff	3 x 0,5 h, kontinuierlich	
	Methanol*	3 x 0,5 h, diskontinuierlich	
	Formaldehyd	3 x 0,5 h, diskontinuierlich	
	Ammoniak	3 x 0,5 h, diskontinuierlich	

A 080, A 082, A	Messkomponenten	Anzahl x Dauer, Art einer Einzelmessung
084. Bau R 410	Abgasrandbedingungen	begleitend über den Messzeitraum
	Gesamtstaub	3 x 0,5 h, diskontinuierlich

	Messkomponenten	Anzahl x Dauer, Art einer Einzelmessung
	Abgasrandbedingungen	begleitend über den Messzeitraum
A 010, A 017 Bau S 421	org. Verbindungen angegeben als Gesamtkohlenstoff	3 x 0,5 h, kontinuierlich
	Methanol*	3 x 0,5 h, diskontinuierlich
	Formaldehyd	3 x 0,5 h, diskontinuierlich

1.9 Ortsbesichtigung vor Messdurchführung

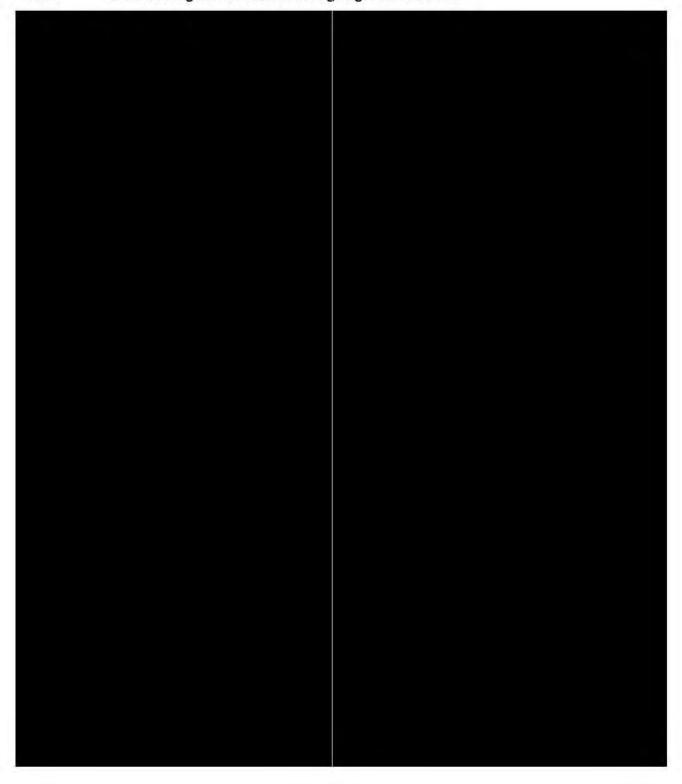
⊠ Oı	rtsbesichtigung durchgeführt am 22.11.2023
	 zusätzlich wurde eine ausführliche Anlagenbeschreibung durch den Auftraggeber zur Verfügung gestellt. Der Bericht der vorhergehenden Messungen liegt vor.
□ ke	eine Ortsbesichtigung durchgeführt
	\square mit vorherigen Messungen an dieser Anlage befasst, Örtlichkeiten sind bekannt
1.10	Messplanabstimmung
	eplante Durchführung der Messungen wurde mit abgestimmt. Die erforderlichen ben wurden dem Landesamt für Umwelt Rheinland-Pfalz per E-Mail mitgeteilt.

1.11 An der Messung beteiligte Personen

1.12 Beteiligung weiterer Institute

Entfällt

1.13 Stelly. Fachlich Verantwortlicher


2. Beschreibung der Anlage und der gehandhabten Stoffe:

2.1 Bezeichnung der Anlage

Siehe Punkt 1.4

2.2 Beschreibung der Anlage

2.2.1 Beschreibung der Produktionsanlagen gemäß Betreiber

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Bau R 410				
Emissionsquelle	Höhe über Grund	Austrittsflasche	UTM- Koordinaten	Bauausführung
A 017	27 m	0,008 m²	32457815 / 5485385	Stahl
A 053	28 m	0,126 m²	32457805 / 5485395	Stahl
A 079	27 m	0,018 m²	32457798 / 5485386	Stahl
A 080	27 m	0,049 m²	32457793 / 5485380	Stahl
A 082	30 m	0,018 m²	32457787 / 5485376	Stahl
A 084	30 m	0,018 m²	32457780 / 5485366	Stahl

Bau \$ 421				
Emissionsquelle	Höhe über Grund	Austrittsflasche	UTM- Koordinaten	Bauausführung
A 010	23 m	0,503 m²	32457755 / 5485385	Stahl
A 017	26 m	0,283 m²	32457778 / 5485417	Stahl

2.4 Angabe der It. Genehmigungsbescheid möglichen Einsatzstoffe

2.5 Betriebszeiten nach Betreiberangaben

Die Emissionszeit entspricht der Betriebszeit abzüglich Wartungs-, Reparatur- und Stillstandszeiten.

- 2.6 Einrichtung zur Erfassung und Minderung der Emissionen
- 2.6.1 Einrichtung zur Erfassung der Emissionen
- 2.6.1.1 Art zur Emissionserfassung

Geschlossenes System mit vollständiger Erfassung der entstehenden Emissionen

2.6.1.2 Ventilatorkenndaten

Projekt-Nr. 6367155.40 Rev. A

Emissionsquelle	A053	A079	A080	A010	A017/S 421
Bezeichnung	Waagenabs. EG+2.OG	Waschkolonne K6800	Staubabsaug. Einfüllkapellen	Sammel- entlüftung	Sammel- entlüftung
Hersteller	TGA Dachlüfter	HSW Airtechnik	Fischbachtaler Maschinenbau	TIPO	Systemair
Hersteller-/ Inventar-Nr.		k.A.	19.2.6720	1014588967	100464657
Тур		Radialventilator RV 4.5-0160 D	Radialventilator RHE3U250K86	TCBTx2/4- 630	AXCP 630- 6
Baujahr		2000	1983	2022	2019
Leistung		0,55 kW	15 kW	4,01	4,49 kW
Nennleistung		400 m³/h		17.810	15.479

2.6.2 Einrichtungen zur Verminderung der Emissionen

Emissionsquelle	A079			
Bezeichnung	Waschkolonne K6800	Strahlwäscher VS 6702/670 (R 4100)/(R5100)		
Hersteller	Christen und Landon	Eigenbau		
Hersteller Nr.	V5836.00			
Тур				
Baujahr	2000	2000		
Arbeitsprinzip	Gegenstrom-Wäscher	Strahlwäscher		
Waschflüssigkeitsführung	Kreislauf 4 m³/h			
Aufbau	2 Füllkörperschüttungen			
Anzahl der Böden	Ohne			
Höhe der Füllkörpersäule	2100 / 3100 mm			
Art der Füllkörper	Hiflow 25-7			
Art der Waschflüssigkeit/Zusätze	Wasser			
Waschflüssigkeitszulauf	2 m³/h	2 m ³ /h		
Erneuerung der Waschflüssigkeit 2	Zulaufausschleusung über Syphon	kontinuierlich		
pH-Wert	Ca. 7			
Druckverlust	5 – 10 mbar			
Betriebstemperatur	20 30 °C			
Bauart des Tropfenabscheiders	PP-Gestrick 100 mm Höhe, Drahtstärke 0,4 mm			
Wartungsintervall	Jährlich			
letzte Wartung	10/2024	U .		

Emissionsquelle	A 017	A 027	
Bezeichnung	Waschkolonne K9504	Strahlwäscher V2000	
Hersteller	Eigenbau	Wiegand	
Hersteller Nr.			
Тур	DWT/MK	911-55-80-2401	
Baujahr	2001		
Arbeitsprinzip	Gegenstrom-Wäscher	Gegenstrom	
Waschflüssigkeitsführung			
Aufbau		J.	
Anzahl der Böden			
Höhe der Füllkörpersäule	2000 x 160 mm		
Art der Füllkörper	k.A:		
Art der Waschflüssigkeit/Zusätze	Wasser		
Waschflüssigkeitszulauf	1/50 l/h	1,5 m³/h	
Erneuerung der Waschflüssigkeit			
pH-Wert	200	A	
Druckverlust			
Betriebstemperatur	· ·	1.	
Bauart des Tropfenabscheiders	*		
Wartungsintervall		9	
letzte Wartung			

Anlage	A 054	A 080	A 082 A 083 A 084	
Bezeichnung	Entstaubungsfilter (F 300)	Abluftfilter F6600/6601	Silofilter F7300-F7500	
Hersteller	MATADOR	PERGANDE	Filter- und Anlagentechnik	
Hersteller Nr.				
Тур	AMT 251911-55- 80-2401	FSE 24-PTO- 578	PFB 6.12 K1.3	
Baujahr				
Bauart		Gewebefilter	Gewebefilter	
Anzahl der Filtersektionen				
Filterfläche	25 m²	21,7 m ²	12,2 m²	
Nennleistung	2400 m ³ /h	1600 m ³ /h	480 m³/h	

2.6.3 Einrichtung zur Verdünnung des Abgases

Entfällt

3. Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Emissionsquelle	Lage Abgaskanal	Höhe der Probenahmestelle	
A 017 (R 410)	vertikal	1,00 m über Dach	
A 053	vertikal	1,85 m über Dach	
A 079	vertikal	1,30 m über Dach	
A 080	vertikal	1,20 m über Dach	
A 082 vertikal		2,25 m über Dach (Einhausung)	
A 084 vertikal 2,2		2,25 m über Dach (Einhausung)	
A 017 (S 421)	vertikal	0,20 m über Dach	
A 010	vertikal	0,90 m über Dach	

Emissionsquelle	Kanalabmessung	Fläche Querschnitt	Einlaufstrecke	Auslaufstrecke
A 017 (R 410)	0,11 m	0,010 m ²	0 m	0 m (Mündung)
A 053	0,64 x 1,13 m	0,7'23 m²	0,3 m	1,3 m
A 079	0,155 m	0,019 m ²	1,0 m	0,4 m
A 080	0,265 m	0,055 m ²	1,3 m	0,5 m
A 082	0,168 m	0,022 m ²	0,9 m	1,5 m
A 084	0,168 m	0,022 m ²	0,9 m	1,5 m
A 017(S 241)	0,62 m	0,302 m²	1,0 m	1,7 m
A 010	0,71 m	0,396 m ²	0 m (konisch)	0 m (konisch)

Empfehlungen nach DIN EN 15259

Emissionsquelle	Einlaufstrecke ≥ 5 dh	Auslaufstrecke ≥ 2 dh	Abstand bis zur Mündung ≥ 5 dh
A 017 (R 410)	nein	nein	nein
A 053	nein	nein	nein
A 079	ja	ja	nein
A 080	ja	ja	nein
A 082	ja	ja	ja
A 084	ja	ja	ja
A 017 (S 421)	nein	nein	nein
A 010	nein	nein	nein

3.1.2 Arbeitsfläche und Messbühne

Emissionsquelle	Probenahmestelle	Arbeitsplatz	Traversierfläche	Wetterschutz
A 017 (R 410)	im Freien	im Freien	ausreichend	nach Wetterlage einzurichten
A 053	im Freien	im Freien	ausreichend	nach Wetterlage einzurichten
A 079	im Freien	im Freien	ausreichend	nach Wetterlage einzurichten
A 080	im Freien	im Gebäude	ausreichend	vorhanden
A 082	im Gebäude	im Gebäude	ausreichend	vorhanden
A 084	im Gebäude	im Gebäude	ausreichend	vorhanden
A 017 (S 421)	im Freien	im Gebäude	ausreichend	vorhanden
A 010	im Freien	im Freien	ausreichend	nach Wetterlage einzurichten

Emissionsquelle	Arbeitsbühne	Zugang zur Probenahmestelle	Energie- versorgung	Wasser
A 017 (R 410)	vorhanden	ebenerdig	230 V	nicht relevant
A 053	vorhanden	ebenerdig	230 V	nicht relevant
A 079	vorhanden	ebenerdig	230 V	nicht relevant
A 080	vorhanden	ebenerdig	230 V	nicht relevant
A 082	vorhanden	ebenerdig	230 V	nicht relevant
A 084	vorhanden	ebenerdig	230 V	nicht relevant
A 017 (S 421)	vorhanden	Steigleiter	230 V	nicht relevant
A 010	vorhanden	ebenerdig	230 V	nicht relevant

3.1.3 Messöffnungen

Emissionsquelle	Anzahl, Größe der Messöffnung	Gewinde	Anordnung
A 017 (R 410)	Mündung		-
A 053	2 x 3"	kein Gewinde	um 90° versetzt
A 079	2 x 3"	kein Gewinde	um 90° versetzt
A 080	2 x 3"	kein Gewinde	um 90° versetzt
A 082	2 x 3"	kein Gewinde	um 90° versetzt
A 084	2 x 3"	kein Gewinde	um 90° versetzt
A 017 (S 421)	2 x 3"	kein Gewinde	um 90° versetzt
A 010	2 x 3"	kein Gewinde	um 90° versetzt

3.1.4 Strömungsbedingungen im Messquerschnitt

Emissionsquelle	Winkel Gasstrom zu Mittelachse	lokale negative Strömung	Mindest- geschwindigkeit vorhanden	Verhältnis max. zu min. Geschwindigkeit
A 017 (R 410)	< 15°	keine	erfüllt	Nicht bestimmt
A 053	< 15°	keine	erfüllt	erfüllt
A 079	< 15°	keine	erfüllt	Nicht bestimmt
A 080	< 15°	keine	erfüllt	Nicht bestimmt
A 082	< 15°	keine	erfüllt	Nicht bestimmt
A 084	< 15°	keine	erfüllt	Nicht bestimmt
A 017 (S 421)	> 15°	keine	erfüllt	erfüllt
A 010	< 15°	keine	erfüllt	Nicht bestimmt

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Emissionsquelle	Messbedingung nach DIN EN 15259	Ergriffene Maßnahmen	Auswirkungen auf das Ergebnis	Empfehlung zur Verbesserung der Messbedingungen
A 017 (R 410)	erfüllt	Keine	Keine	Keine
A 053	erfüllt	Keine	Keine	Keine
A 079	erfüllt	Keine	Keine	Keine
A 080	erfüllt	Keine	Keine	Keine
A 082	erfüllt	Keine	Keine	Keine
A 084	erfüllt	Keine	Keine	Keine
A 017 (S 421)	nicht erfüllt	Keine	Keine	Keine
A 010	nicht erfüllt	Keine	keine	Keine

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

Emissionsquelle	Messkomponente	Achsen	Messpunkte	Eintauchtiefe (mm)	
A 017(R 410)	Gasförmige Komponenten	1	1	55	
A 053	Gasförmige Komponenten	2	2	283, 848	
A 079	A 079 Gasförmige Komponenten 1 1		1	78	
A 080	Gesamtstaub	1	1	33	
A 082, A 084	Gesamtstaub	1	1	84	
A 084 Gesamtstaub		1	1	84	
A 017(S 421) Gasförmige Komponenten		2	2	91, 529	
A 010 Gasförmige Komponenten		2	2	104, 606	

Die Lage der Messpunkte im Messquerschnitt entspricht der DIN EN 15259.

Berichts-Nr.: Prüfinstitut:

3.2.2

Projekt-Nr. 6367155.40 Rev. A

Homogenitätsprüfung:
☐ durchgeführt (siehe Ergebnisse in Nr. 7)
⊠ nicht durchgeführt, weil:
☐ Fläche Messquerschnitt < 0,1 m²
⊠ Netzmessung, bei Querschnittsfl. >0,1 m
☐ liegt vor
Datum der Homogenitätsprüfung:

Homogenitätsprüfung

3.2.3 Komponentenspezifische Darstellung

Emissionsquelle: A 017, Bau R 410.

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt
Strömungs- geschwindigkeit	11	1			
Abgastemperatur	1	1			
Gesamttaub	1	1			
Gesamtkohlenstoff	1	1			
Methanol	1	1			
Mono-Ethanolamin	1	1			
Formaldehyd	1	1			
Ammoniak	1	1			

Emissionsquelle: A 053

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt
Strömungs- geschwindigkeit	2	2			
Abgastemperatur	2	2			
Gesamtkohlenstoff	2	2			
Methanol	2	2			
Mono-Ethanolamin	2	2			
Formaldehyd	2	2			

Emissionsquelle: A 079

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt
Strömungs- geschwindigkeit	1	1			
Abgastemperatur	1	1			
Gesamtkohlenstoff	_ 1	1			
Methanol	1	1			
Ammoniak	1	1			
Formaldehyd	1	1/			

Emissionsquelle A 080, A 082 und A 084

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt
Strömungs- geschwindigkeit	1	1			
Abgastemperatur	1	1			
Gesamtstaub	1	1			

Emissionsquelle A 017 und A 010 (Bau S 241)

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt
Strömungs- geschwindigkeit	2	2			
Abgastemperatur	2	2			
Gesamtkohlenstoff	2	2			
Methanol	2	2			
Formaldehyd	2	2			

4. Mess- und Analysenverfahren

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Messverfahren: DIN EN ISO 16911-1 Anemometer (Flügelradanemometer)

Hersteller: Höntzsch Typ: HFA-EX

Messbereich: - 40 bis + 40 m/s
Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich
Kontinuierliche Ermittlung: ⊠ ja □ nein

4.1.2 Statischer Druck im Abgaskanal

Messverfahren: Mikromanometer (siehe 4.1.1) unter Berücksichtigung der

entsprechenden Anschlüsse

Kontinuierliche Ermittlung: ☐ ja ☑ nein

Messverfahren: in Anlehnung an DIN EN ISO 16911-1

Mikromanometer unter Berücksichtigung der

entsprechenden Anschlüsse

Hersteller: Airflow Typ: PVM 620

Messbereich:

Letzte Überprüfung / Kalibrierung:

Kontinuierliche Ermittlung:

- 3735 bis + 3735 Pa

02/2024 / jährlich

□ ja ⋈ nein

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messverfahren: Digital-Barometer

Hersteller: Airflow Lufttechnik GmbH

Typ: DB2

Messbereich:+ 700 bis + 1100 hPaLetzte Überprüfung / Kalibrierung:02/2024 / ½ jährlichKontinuierliche Ermittlung:□ ja ⋈ nein

4.1.4 Abgastemperatur

Messverfahren: NiCr/Ni-Thermoelement mit elektronischer

Nullpunktkompensation

Hersteller: Testo Typ: 922

 Messbereich:
 - 50 bis + 1150°C

 Letzte Überprüfung / Kalibrierung:
 02/2024 / jährlich

 Kontinuierliche Ermittlung:
 □ ja ⋈ nein

Projekt-Nr. 6367155.40 Rev. A Bericht vom 02.10.2024 Blatt 19 von 34

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messverfahren: Psychrometrische Feuchtemessung

Zwei-Thermometermethode

Hersteller: Fa. Ahlborn

Typ: Ni-Cr-·Ni Thermoelemente (Typ K)

Messbereich: 0 bis 100 % rel. Feuchte

Einsatzbereich: 0 bis + 100 °C

Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich

Kontinuierliche Ermittlung: ⊠ ja □ nein

4.1.6 Abgasdichte

Berechnet unter Berücksichtigung der Abgastemperaturen und der Druckverhältnisse sowie der Abgasbestandteile an Sauerstoff (O₂), Kohlendioxid (CO₂), Rest als Stickstoff (N₂) und der Abgasfeuchte (Wasserdampfanteil im Abgas)

4.1.7 Abgasverdünnung

Entfällt

4.1.8 Volumenstrom

Ermittlungsmethode: Berechnet aus mittlerer Strömungsgeschwindigkeit

und Querschnittsfläche

mittlere Abgasgeschwindigkeit

Messverfahren: DIN EN ISO 16911-1

Messeinrichtung: siehe 4.1.1

Querschnittsfläche:

Ermittlungsverfahren: direkte Maßbestimmung

Messeinrichtung: Messstab

Fläche der Volumenstrommesseinrichtung

zu Querschnittsfläche < 5 %: ⊠ ja □ nein

Projekt-Nr. 6367155.40 Rev. A Bericht vom 02.10.2024

cht vom 02.10.2024 Blatt 20 von 34

4.2 Automatische Messverfahren

4.2.1 Messkomponente Organische Stoffe als Gesamtkohlenstoff

Messverfahren

Messprinzip: Flammenionisationsdetektor (FID)

Richtlinien: DIN EN 12619

Hersteller: Testa
Typ: iFID
Baujahr: 2021

Eignungsprüfung BAnz AT. 03.05.2021 B10, Kap. I Nr. 4.2 Nachweisgrenze: 1 % vom Messbereichsendwert, It. Hersteller

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Eingestellter Messbereich

Physikalischer Messbereich /Signalausgang: 0 - 100/10.000 ppm 4 - 20 mA

Gerät eignungsgeprüft

☑ Zertifizierung nach DIN EN 15267-4☑ Zertifizierung nach DIN EN 15267-3

☐ Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert

☐ Eignungsprüfung auf Basis der BEP ohne Zertifizierung

☐ Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert

Probenahme und Probenaufbereitung

Entnahmesonde: Edelstahl, beheizt

Länge Sonde: 0,5 m

Partikelfilter: Quarzfilter, beheizt

Probengasleitung: Teflon, beheizt auf 180°C, Länge: 15 m

Werkstoff gasführender Teile: Teflon, Edelstahl

Überprüfen von Null und Referenzpunkt mit Prüfgasen

Nullgas: Synth. Luft

über internen Aktivkohlefilter gereinigte Umgebungsluft

Prüfgas: 91,4 ppm Propan in synthetischer Luft

Hersteller / Datum: Linde AG, 22.02.2022

Stabilitätsgarantie: 36 Monate

Rückführbar zertifiziert: ja, mit DKD zertifiziertem Prüfgas

Flaschen-Nr.: M905983

Aufgabe durch das gesamte

Probenahmesystem: ja

Einstellzeit des gesamten Messaufbaus

t_{90%}= ca. 10 s: Ermittlung mittels Stoppuhr bei druckloser

Prüfgasaufgabe an Probenahmesonde

Maßnahmen zur Qualitätssicherung

Jährliche Funktionskontrolle i.A. an DIN EN 14181

Justierung (Null- und Referenzpunkt) vor

Messdurchführung

Prüfgasaufgabe am Analysator, anschließende

Prüfgasaufgabe an Entnahmesonde

Dichtigkeit ist bei Übereinstimmung der Messwerte

gegeben.

Überprüfung (Null- und Referenzpunkt) nach erfolgter

Messdurchführung. Prüfung der Drift.

Projekt-Nr. 6367155.40 Rev. A Bericht vom 02.10.2024 Blatt 21 von 34

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

4.3.1 Messkomponente Formaldehyd (HCHO)

Messverfahren

Richtlinien Probenahme: Messen gasförmiger Emissionen, Messen von

Formaldehyd nach dem AHMT-Verfahren gemäß

VDI 3862-4: 2001-05

Messplatzaufbau

Entnahmesonde, Material: Duranglas- bzw. Titansonde, beheizt Partikelfilter, Material: Quarzwatte vor der Sonde im Abgaskanal

Ab-/Adsorptionseinrichtungen: 2 Frittenwaschflaschen in Reihe

Sorptionsmittel: bidestilliertes Wasser

Sorptionsmittelmenge: 2 x 50 ml
Länge Absaugrohr ca. 0,4 m
Ansaugöffnung bis Sorbens: ca. 0,6 m
Probentransfer: < 2 Tage
Beteiligung eines Fremdlabors: nein

Analytische Bestimmung

Richtlinien Analytik: VDI 3862-4: 2001-05,

photometrische Bestimmung mit AHMT

Aufarbeitung der Probe: entfällt
Analysengeräte Hersteller: Perkin Elmer

Typ: Lambda 2 Wellenlänge: $\lambda = 550 \text{ nm}$

Küvettendicke: 1 cm

Kalibrierung / Standards: kalibrierter Messbereich: 0,0 bis 2,5 mg/l

Verfahrenskenngrößen und Art der Ermittlung

Querempfindlichkeit: keine festgestellt Bestimmungsgrenze: < 2 µg/Probe

< 0,03 mg/m³ (bei 0,06 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Maßnahmen zur Qualitätssicherung

Behandlung der

Kenndaten

Probenahmeeinrichtung Reinigen der wiederverwendeten Glasteile

vor dem Einsatz:

Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2 %

Analyse: Bestimmung eines Feldblindwertes

Projekt-Nr. 6367155.40 Rev. A Bericht vom 02.10.2024 Blatt 22 von 34

4.3.2 Messkomponente Methanol (CH₄O)

Messverfahren

Richtlinien Probenahme: VDI 2457

Adsorptionsverfahren

GC-Analyse

Messplatzaufbau

Entnahmesonde, Material: Duranglassonde, beheizt Partikelfilter, Material: Quarzwatte vor der Sonde

Abscheidemedium

Ab-/Adsorptionseinrichtungen: Adsorptionsröhrchen (Dräger)

Sorptionsmittel: Silicagel Typ G
Sorptionsmittelmenge: 1 x 1.000 mg
Länge Absaugrohr ca. 0,4 m
Ansaugöffnung bis Sorbens: ca. 0,6 m

Probentransfer: < 2 Tage gekühlt gelagert

Beteiligung eines Fremdlabors: nein

Analytische Bestimmung

Richtlinien Analytik: VDI 2457

Aufarbeitung der Probe: Desorption mit H₂O / Isopropanol 95:5

Analysengerät: Gaschromatograph
Kenndaten: GC Perkin Elmer mit FID

Trägergas Helium

Trennsäule Poraplot Q 30 m, ID 0,32 mm

Kalibrierung / Standards: externe Mehrpunktkalibrierung

entsprechende Verdünnung der Stammlösung

Verfahrenskenngrößen und Art der Ermittlung

Querempfindlichkeit: Bei Beachtung der QS - Maßnahmen keine

Bestimmungsgrenze: < 0,1 mg/Probe

< 1,67 mg/m³ (bei 0,06 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Maßnahmen zur Qualitätssicherung

Behandlung der Probenahmeeinrichtung

vor dem Einsatz: Reinigen der wiederverwendeten Glasteile

Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2 %

Analyse: Bestimmung eines Feldblindwertes

Projekt-Nr. 6367155.40 Rev. A Bericht vom 02.10.2024 Blatt 23 von 34

4.3.3 Messkomponente Amin (hier: Mono-Ethanolamin)

Messverfahren

Richtlinien Probenahme: VDI 2457

Adsorptionsverfahren

GC-Analyse

Messplatzaufbau

Entnahmesonde, Material: Duranglas- bzw. Titansonde, beheizt Partikelfilter, Material: Quarzwatte vor der Sonde im Abgaskanal

Ab-/Adsorptionseinrichtungen: Adsorptionsröhrchen (Dräger)

Sorptionsmittel: Typ ADS Sorptionsmittelmenge: 600 mg

Sammelschicht: 300 mg, Kontrollschicht: 300 mg

Länge Absaugrohr ca. 0,4 m
Ansaugöffnung bis Sorbens: ca. 0,6 m
Probentransfer: < 2 Tage
Beteiligung eines Fremdlabors: nein

Analytische Bestimmung

Richtlinien Analytik: VDI 2457

Analyse mittels: Gaschromatographie/Headspace-Technik Kalibrierung / Standards: externe Mehrpunktkalibrierung (> 3)

entsprechende Verdünnung der Stammlösung

Verfahrenskenngrößen und Art der Ermittlung

Querempfindlichkeit: Bei Beachtung der QS - Maßnahmen keine

Bestimmungsgrenze: 1 µg/Probe

0,03 mg/m³ (bei 0,03 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Maßnahmen zur Qualitätssicherung

Behandlung der Probenahmeeinrichtung

vor dem Einsatz: Reinigen der wiederverwendeten Glasteile

Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2 %

Analyse: Bestimmung eines Feldblindwertes

Projekt-Nr. 6367155.40 Rev. A Bericht vom 02.10.2024 Blatt 24 von 34

4.4 Messverfahren für partikelförmige Emissionen

4.4.1 Messkomponente Gesamtstaub

Messverfahren

Richtlinie Probenahme und DIN EN 13284-1 Ermittlung der

Bestimmung: Staubmassenkonzentration bei geringen

Staubkonzentrationen - Teil 1: Manuelles gravimetrisches

Verfahren; VDI-Richtlinie 2066 Blatt 1 Messen von Partikeln; Staubmessung in strömenden Gasen; Gravimetrische Bestimmung der Staubbeladung

Messplatzaufbau

Rückhaltesystem für partikelförmige

Stoffe:

Entnahmesonde: Entnahme direkt über Düse auf Filterkopfgerät mit

Filterhalter

In-Stack-Filtration

1/2" Edelstahlrohr / 1,4 m Länge Sonde: Filtergerät: Planfilterk.opfgerät

Wirkdurchmesser: siehe Anhang Messbericht

unbeheizt: Beheizung: Material: Titan

Planfilterkopf mit Düse, Krümmer, Entnahmesonde, Absaugeinrichtung:

> Kondensatfalle, Trockenturm, Gaspumpe mit Bypassventil, Temperaturanzeige, Gasuhr,

Durchflussmessgerät

Abscheidemedium: Quarz-Mikrofaserfilter

Hersteller / Typ: Munktell / MK 360 (getempert)

Filterdurchmesser: 45 mm Porendurchmesser: 0,3 µm 99,998 % Abscheidegrad:

Aufarbeitung und Auswertung des Abscheidemediums

Auf Filterhaltern in geschlossenen Petrischalen Transport und Lagerung:

Trocknungstemperatur des Filters vor 180°C

der Beaufschlagung:

Trocknungstemperatur des Filters nach 160°C

der Beaufschlagung:

Trocknungszeit des Filters vor und nach mind. 1 h

der Beaufschlagung:

Abkühlzeit im Exsikkator: mind. 4 h

Rückgewinnung der Ablagerungen vor

dem Filter:

entfällt, Messanordnung gemäß Nr. 10.5 DIN EN 13284-1

Behandlung der Spüllösungen: nicht zutreffend Bestimmung von Gesamtleerproben: Planfilter

Waage

Hersteller: Sartorius

CPA 225 D-0CE Typ:

Ablesbarkeit: 0,01 mg

Verfahrenskenngrößen

Bestimmungsgrenze: 0,4 mg/Probe

0,4 mg/m³ (bei 1,0 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Blatt 25 von 34

Maßnahmen zur Qualitätssicherung

Reinigen der Staub berührenden Teile im Ultraschallbad

vor Messdurchführung

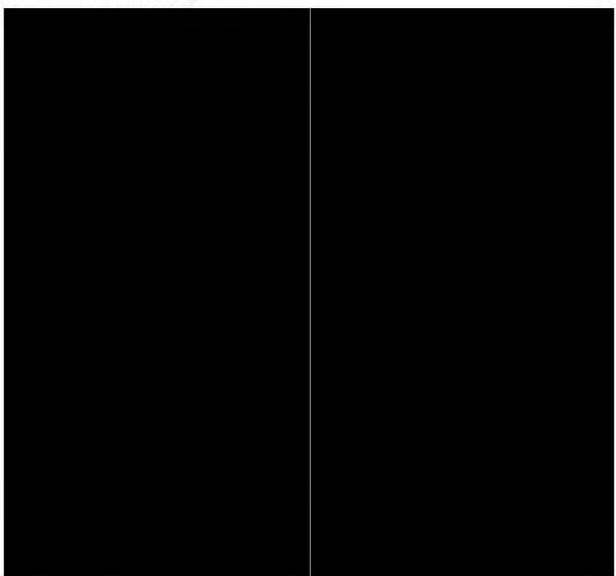
Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2%

Analyse: Kontrolle der Waage arbeitstäglich

Bestimmung eines Feldblindwertes

4.5 Besondere hochtoxische Abgasinhaltsstoffe


Entfällt

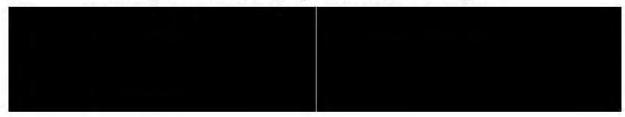
4.6 Geruchsemissionen

Entfällt

5. Betriebszustand der Anlage während der Messungen

5.1 Produktionsanlage

5.2 Abgasreinigungsanlage


Die Abgasreinigungseinrichtungen wurden wie unter Kapitel 2.6.2 dargestellt bestimmungsgemäß betrieben.

Abweichungen von genehmigter oder bestimmungsgemäßer Betriebsweise: nicht zutreffend

Besondere Vorkommnisse: nicht zutreffend

6. Zusammenstellung der Messergebnisse und Diskussion

6.1 Bewertung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Anlage: Kaurefix- Fabrik (Anlagen-Nr. 04.03), Bau R 410

Messstelle: Emissionsquelle A 017

Messkomponente: Gesamtkohlenstoff [A 017]

			Land Wall		Emissionsbegrenzung	
Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Konzentration [mg/m³]	Massenstrom [kg/h]
1	24.01.2024	12:51 - 13:20	285,7	0,0110	50	-
2	24.01.2024	13:23 - 13:52	243,9	0,0050	50	
3	24.01.2024	14:03 - 14:32	239,3	0,0050	50	-
Mittelwert			256,3	0,0070		
Maximalwert			285,7	0,0110	50	-

Messkomponente:

Formaldehyd [A 017]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionst Konzentration [mg/m³]	
1	24.01.2024	12:50 - 13:20	83,6	0,0033	10	
2	24.01.2024	13:33 - 14:03	36,2	0,0007	10	
3	24.01.2024	14:14 - 14:44		0,0006	10	
Mittelwert			49,6	0,0015		
Maximalwert			83,6	0,0033	10	÷ 1

Messkomponente:

Ammoniak [A 017]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsb Konzentration [mg/m³]	
1	20.03.2024	13:29 - 13:59	<0,01	<0,0001	30	
. 2	20.03.2024	14:09 - 14:39	0,03	<0,0001	30	
Mittelwert			<0,02	<0,0001		
Maximalwert			0,03	<0,0001	30	J- 1

Bericht vom 02.10.2024

Blatt 28 von 34

Messkomponente:

Methanol [A 017]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
1	24.01.2024	12:50 - 13:20	879,3	0,0343	20	-
2	24.01.2024	13:33 - 14:03	575,7	0,0115	20	
3	24.01.2024	14:14 - 14:44	575,7	0,0115	20	-
Mittelwert			676,9	0,0191		
Maximalwert			879,3	0,0343	20	-

Messkomponente:

Mono-Ethanolamin [A 017]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
1	24.01.2024	12:50 - 13:20	<0,1	<0,0001	20	-
2	24.01.2024	13:33 - 14:03	<0,1	<0,0001	20	-
. 3	24.01.2024	14:14 - 14:44	<0,1	<0,0001	20	
Mittelwert			<0,1	<0,0001		
Maximalwert			<0,1	<0,0001	20	_

Anlage: Kaurefix- Fabrik (Anlagen-Nr. 04.03), Bau R 410

Messstelle: Emissionsquelle A 053

Messkomponente: Gesamtkohlenstoff [A 053]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
1	20.03.2024	11:32 - 12:02	1,6	0,0130	5.0	
2	20.03.2024	12:07 - 12:37	2,4	0,0190	50	24
3	20.03.2024	12:44 - 13:14	1,2	0,0100	50	-
4	20.03.2024	13:18 - 13:48	1,6	0,0130	50	
Mittelwert			1,7	0,0138		
Maximalwert			2,4	0,0190	50	

Messkomponente:

Formaldehyd [A 053]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsb Konzentration [mg/m³]	
1	20.03.2024	11:32 - 12:02	0,04	0,0004	10	
2	20.03.2024	12:07 - 12:37	0,09	0,0008	10	
3	20.03.2024	12:44 - 13:14	0,07	0,0006	10	
4	20.03.2024	13:18 - 13:48	0,08	0,0006	10	
Mittelwert			0,07	0,0006		
Maximalwert			0,09	0,0008	10	5-5-

Bericht vom 02.10.2024

Blatt 29 von 34

Messkomponente:

Methanol [A 053]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
_ 1	20.03.2024	11:32 - 12:02	0,1	0,0011	20	-
2	20.03.2024	12:07 - 12:37	4,1	0,0317	20	-
3	20.03.2024	12:44 - 13:14	<0,1	<0,0012	20	
4	20.03.2024	13:18 - 13:48	2,2	0,0175	20	-
Mittelwert			<1,6	<0,0129		
Maximalwert			4,1	0,0317	20	9

Messkomponente:

Mono-Ethanolamin [A 053]

5 T			Land I	1		Emissionsbegrenzung	
Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Konzentration [mg/m³]	Massenstrom [kg/h]	
1	20.03.2024	11:32 - 12:02	<0,1	<0,0012	20		
2	20.03.2024	12:07 - 12:37	<0,1	<0,0012	20	4	
3	20.03.2024	12:44 - 13:14	<0,1	<0,0013	20	-	
4	20.03.2024	13:18 - 13:48	<0,1	<0,0013	20	10-2	
Mittelwert			<0,1	<0,0013			
Maximalwert			<0,1	<0,0013	20	-	

Anlage: Kaurefix- Fabrik (Anlagen-Nr. 04.03), Bau R 410

Messstelle: Emissionsquelle A 079

Messkomponente: Gesamtkohlenstoff [A 079]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsk Konzentration [mg/m³]	
1	25.01.2024	08:26 - 08:56	2,6	0,0000	50	
2	25.01.2024	10:49 - 11:19	6,3	0,0010	50	34
3	25.01.2024	11:50 - 12:20	17,1	0,0020	50	-
4	25.01.2024	12:30 - 13:00	111,1	0,0150	50	-
Mittelwert			34,3	0,0045		7
Maximalwert			111,1	0,0150	50	-

Messkomponente:

Formaldehyd [A 079]

					Emissionsbegrenzung	
Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Konzentration [mg/m³]	Massenstrom [kg/h]
1	25.01.2024	08:26 - 08:56	0,4	<0,0001	10	-
2	25.01.2024	10:49 - 11:19	<0,04	<0,0001	10	
3	25.01.2024	11:50 - 12:20	<0,02	<0,0001	10	
4	25.01.2024	12:30 - 13:00	<0,04	<0,0001	10	-
Mittelwert			<0,13	<0,0001		
Maximalwert			0,4	<0,0001	10	4

Bericht vom 02.10.2024

Blatt 30 von 34

Messkomponente:

Ammoniak [A 079]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
11	20.03.2024	11:18 - 11:48	0,2	<0,0001	30	-
2	20.03.2024	12:00 - 12:30	0,2	<0,0001	30	3
3	20.03.2024	12:43 - 13:13	0,4	0,0001	30	7 94
Mittelwert			0,3	<0,0001		
Maximalwert			0,4	0,0001	30	

Messkomponente:

Methanol [A 079]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsb Konzentration [mg/m³]	
1	25.01.2024	08:26 - 08:56	0,1	<0,0001	20	-
2	25.01.2024	10:49 - 11:19	<0,1	<0,0001	20	7 10 10 -
3	25.01.2024	11:50 - 12:20	<0,1	<0,0001	20	
4	25.01.2024	12:30 - 13:00	<0,1	<0,0001	20	-
Mittelwert		<0,1	<0,0001			
Maximalwert			0,1	<0,0001	20	11-

Anlage: Kaurefix- Fabrik (Anlagen-Nr. 04.03), Bau R 410

Messstelle: Emissionsquelle A 080

Messkomponente: Staub [A 080]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
1	25.01.2024	07:58 - 08:28	<0,3	0,0000	20	11.91
2	25.01.2024	11:30 - 12:00	<0,3	0,0000	20	-
3	25.01.2024	12:40 - 13:10	<0,3	0,0000	20	-
Mittelwert			<0,3	0,0000		
Maximalwert			<0,3	0,0000	20	ė

Anlage: Kaurefix- Fabrik (Anlagen-Nr. 04.03), Bau R 410

Messstelle: Emissionsquelle A 082

Messkomponente: Staub [A 082]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionst Konzentration [mg/m³]	
1	24.01.2024	11:29 - 11:59	<0,3	0,0000	20	- Tay-12
2	24.01.2024	12:45 - 13:15	<0,3	0,0000	20	
3	24.01.2024	13:17 - 13:47	<0,3	0,0000	20	-
Mittelwert			<0,3	0,0000		
Maximalwert			<0,3	0,0000	20	1 - 1 - 1

Bericht vom 02.10.2024

Blatt 31 von 34

Anlage: Kaurefix- Fabrik (Anlagen-Nr. 04.03), Bau R 410

Messstelle: Emissionsquelle A 084

Messkomponente: Staub [A 084]

Messung Nr. Datum		Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstrom [mg/m³] [kg/h]	
1	24.01.2024	14:25 - 14:55	<0,3	0,0000	20	1
2	24.01.2024	15:03 - 15:28	<0,4	0,0000	20	9 9 3
Mittelwert			<0,4	0,0000		
Maximalwert			<0,4	0,0000	20	-

Anlage: Kaurefix- Fabrik (Anlagen-Nr. 04.03), Bau S 241

Messstelle: Emissionsquelle A 010

Messkomponente: Gesamtkohlenstoff [A 010]

Messung Nr. Datum		Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstro [mg/m³] [kg/h]	
1	21.03.2024	10:20 - 10:50	3,7	0,0530	50	-
2	21.03.2024	11:00 - 11:30	3,1	0,0440	50	
3	21.03.2024	11:40 - 12:10	3,6	0,0520	50	15-15
Mittelwert			3,5	0,0497		
Maximalwert			3,7	0,0530	50	-

Messkomponente: Formaldehyd [A 010]

Messung Nr. Datum		Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstr [mg/m³] [kg/h]	
1	21.03.2024	10:20 - 10:50	0,4	0,0067	10	
2	21.03.2024	10:57 - 11:27	0,2	0,0032	10	_
3	21.03.2024	11:33 - 12:03	0,2	0,0034	10	
Mittelwert			0,3	0,0044		
Maximalwert			0,4	0,0067	10	-

Messkomponente: Methanol [A 010]

Messung Nr. Datum		Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstro [mg/m³] [kg/h]	
1	21.03.2024	10:20 - 10:50	5,6	0,0795	20	-
2	21.03.2024	10:57 - 11:27	1,0	0,0141	20	-
3	21.03.2024	11:33 - 12:03	1,1	0,0155	20	-
Mittelwert			2,6	0,0364		
Maximalwert			5,6	0,0795	20	-

Bericht vom 02.10.2024

Blatt 32 von 34

Anlage: Kaurefix- Fabrik (Anlagen-Nr. 04.03), Bau S 241

Messstelle: Emissionsquelle A 017

Messkomponente: Gesamtkohlenstoff [A 017]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstron [mg/m³] [kg/h]		
1	21.03.2024	10:42 - 11:12	4,9	0,0500	50	_	
2	21.03.2024	11:30 - 12:00	0,7	0,0080	50	-	
3	21.03.2024	12:00 - 12:30	0,2	0,0030	50	-	
Mittelwert			1,9	0,0203			
Maximalwert			4,9	0,0500	50		

Messkomponente: Formaldehyd [A017]

Messung Nr. Datum		Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstro [mg/m³] [kg/h]	
1	21.03.2024	10:42 - 11:12	1,1	0,0119	10	2
2	21.03.2024	11:22 - 11:52	0,5	0,0051	10	-
3	21.03.2024	12:02 - 12:32	0,5	0,0053	10	
Mittelwert			0,7	0,0074		1
Maximalwert			1,1	0,0119	10	[

Messkomponente: Methanol [A017]

Messung Nr. Datum		Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstro [mg/m³] [kg/h]	
1	21.03.2024	10:42 - 11:12	22,6	0,2293	20	
2	21.03.2024	11:22 - 11:52	2,0	0,0202	20	
3	21.03.2024	12:02 - 12:32	1,7	0,0176	20	4
Mittelwert			8,8	0,0890		
Maximalwert			22,6	0,2293	20	1 12

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K)

6.3 Messunsicherheiten

Anlage:			Kai	urefix- Fabrik	(Anlagen-Nr.	04.03), Bau	R 410
Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A 017	Gesamtkohlenstoff	mg/m³	285,7	6,64	279	292	indirekter Ansatz
A 017	Formaldehyd	mg/m³	83,6	8,1	76	92	indirekter Ansatz
A 017	Ammoniak	mg/m³	0,03	0,0	0,0	0,0	indirekter Ansatz
A 017	Methanol	mg/m³	879,3	85,22	794	965	indirekter Ansatz
A 017	Mono-Ethanolamin	mg/m³	<0,1	0,02	<0,1	<0,1	indirekter Ansatz

Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A 053	Gesamtkohlenstoff	mg/m³	2,4	1,1	1	4	indirekter Ansatz
A 053	Formaldehyd	mg/m³	0,09	0,01	0,1	0,1	indirekter Ansatz
A 053	Methanol	mg/m³	4,1	0,4	4	5	indirekter Ansatz
A 053	Mono-Ethanolamin	mg/m³	<0,1	0,02	<0,1	<0,1	indirekter Ansatz

Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A 079	Gesamtkohlenstoff	mg/m²	111,1	2,58	109	114	indirekter Ansatz
A 079	Formaldehyd	mg/m³	0,4	0,05	0,4	1	indirekter Ansatz
A 079	Ammoniak	mg/m³	0,4	0,03	0,4	0,4	indirekter Ansatz
A 079	Methanol	mg/m³	0,1	0,02	0,1	0,1	indirekter Ansatz

Emissions- quelle	Messkomponente	Einheit	Maximalwert Ymax	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A 080	Staub	mg/m³	<0,3	0,059	<0,2	<0,4	indirekter Ansatz

Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A 082	Staub	mg/m³	<0,3	0,052	<0,2	<0,4	indirekter Ansatz

Emissions- quelle		Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode	
A 084	Staub	mg/m³	<0,4	0,063	<0,3	<1	indirekter Ansatz	

Anlage:

Kaurefix- Fabrik (Anlagen-Nr. 04.03), Bau S 241

Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode	
A 017	Gesamtkohlenstoff	mg/m³	4,9	1,48	3	6	indirekter Ansatz	
A017	Formaldehyd	mg/m³	1,1	0,11	1	1	indirekter Ansatz	
A017	Methanol	mg/m²	22,6	2,2	20	25	indirekter Ansatz	

Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A 010	Gesamtkohlenstoff	mg/m³	3,7	1,1	3	5	indirekter Ansatz
A 010	Formaldehyd	mg/m³	0,4	0,05	0,4	1	indirekter Ansatz
A 010	Methanol	mg/m³	5,6	0,55	5	6	indirekter Ansatz

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K).

6.4 Diskussion der Ergebnisse

Die Plausibilitätsprüfung der Messergebnisse in Hinblick auf die Anlagenauslastung während des Messzeitraums, erfolgte durch Kontrolle der Produktionsabläufe und der im Leitstand angezeigten Betriebsparameter und ergab keine Abweichung von der bestimmungsgemäßen Betriebsführung der Anlage. Unter Berücksichtigung der Anlagenauslastung während der Messungen ergeben sich durch den Vergleich der Messergebnisse miteinander und der Betriebsweise der Anlage keinerlei Unstimmigkeiten. Die ermittelten Messergebnisse erscheinen im Hinblick auf die Betriebsbedingungen während des Messzeitraums und die Bedingungen der Probenahme als plausibel.

Am Auslass A 017 (Bau R 410) wurden im Rahmen dieser Messkampagne nur die maximalen
Emissionszustände (Ablassvorgang
messtechnisch erfasst. Laut Betreiber haben diese beiden Ablassvorgänge jedoch nur einen
geringen Anteil an der jährlichen Emissionszeit. Am Auslass A 017 (Bau R 410) wird überwiegend
Verdrängungsluft aus verschiedenen Behältern abgeleitet. Dabei entstehen zu einem Großteil der
Emissionszeiten keine messbaren Abgasvolumenströme bzw. keine relevanten Emissionen. Details
zu den Angaben des Betreibers werden durch diesen in einer eigenständigen Stellungnahme der
Überwachungsbehörde vorgelegt.

Frankfurt, den 02.10.2024

Stelly, fachlich Verantwortlicher:

Der Sachverständige:

7. Anhang

7.1 Mess- und Rechenwerte

Projekt-Nr. 6367155.40 Rev. A

	aggebe		F SE	-				-			
	-	nmer: 6367						20			
nlag		9	refix F	abrik				·			
ess	ort:	A01	7								
achi	bearbe	eiter:									
ess	tag:		24.01	.202	4	Uhrzeit	von	12:51 bis	13:00	Me	essung Nr. 1
	nungs Stauro	messgeri	<u>it</u>				Achsen	anordnung		Kanalabme a (D)=	ssungen 110 mm
F	aktor	1,000					1	7 4		b =	mm
Κ .	Anem	ometer	_				¢9) ь		A =	0,01 m ²
nte	iluna	Messnetz					X		а	Wandstärke =	mm
	ahl Ac		j			Barom	eterstar				nbeschreibung
Anz	zahl Pi	unkte 1				$b_0 =$	1012	hPa		Höhe Quelle =	m
_		E	I p:rr		4 36	- A		01 -		Fläche Quelle =	m²
130	MD	Eintauch-	Diffe		druck	Stat.	Tempe-	Strömungs-		Lage Kanal = Höhe Messst. =	Inc
ACIISE	MP	tiefe	14	[Pa]	M 3	Druck [hPa]	ratur [°C]	geschw. [m/s]	MP	Einlaufstr. =	m
A	1	[mm] 55	IVI I	IVI Z	IVI 3	0,02	23,0	1,2	x	Auslaufstr. =	m
^	-	55				0,02	23,0	1,2	X	Zahl Messöff. =	Stk
+	_									Maß Messöff. =	mm
7										Mais Messoll	Juni
										<u>Feuchte</u>	
_			7							2-Thermome	
	7-1									Temperatur trocken =	23 °C
+	-									Temperatur feucht =	20 °C
=					1		-	-			
7										relative Feuchte =	76,76 %
T								*		absolute Feuchte =	0,02 kg/m³ i.N.:
	1 - 1									Feuchte =	2,14 Vol. %
- 1	$t = t_0$										
=										<u>Dichte</u>	
								· ·		O ₂ =	20,9 Vol-%
	5 8 8							*		CO ₂ =	0,04 Vol-%
- 1				7		1 1		-		Rest =	79,06 %
	1 1 5									Dichte Betrieb =	1,17653 kg/m ³
-								-			
										<u>Mittelwerte</u>	
_ /	/EN			ja Ti)		p _{stat} =	0 hPa
	SET									t _{tr} =	23 °C
				1-5						w =	1,2 m/s
	= +			-						Verhältnis w _{max} /w _{min}	
+								*		<u>Volumenstr</u>	röme
										Betrieb =	43 m³/h
1								7		Norm, feucht =	40 m³/h
	SER!			701						Norm, trocken =	39 m³/h
										1.00-000	
J										Sondengröße Absaugerate	2,8 m³/h
- 1	$A \subseteq S$						-		Ь.	Absaugerate berechnet	
_											28,73 mm

Projekt-Nr. 6367155.40 Rev. A

Auftr	aggeb	er: BAS	F SE								
Auftr	agsnu	mmer: 6367					Y.				
Anla	ge:	Kau	refix Fabrik								
Mess	sort:	A01	7				X				
Sach	bearb	eiter:									
Mess	stag:		24.01.2024	1	Uhrzeit	von	13:36 bis	13:38	Me	ssung Nr.	2
Strö	mung	smessgerä	<u>it</u>			Achsen	anordnung		Kanalabme		
	Staur					_			a (D)=	110	
	aktor					1		111	b =	0.04	mm
X	Anem	nometer				1) 6		A = Wandstärke =	0,01	m² mm
		Messnetz chsen 1	1		Darom	eterstar		а	Messstelle	nhoechroi	hung
		Punkte 1		1	b ₀ =		hPa		Höhe Quelle =		m
		unito 1				1012	W. 42		Fläche Quelle =		m²
ø		Eintauch-	Differenzo	ruck	Stat.	Tempe-	Strömungs-		Lage Kanal =		
Achse	MP	tiefe	[Pa]		Druck	ratur	geschw.	MP	Höhe Messst. =		m
		[mm]	M1 M2	M 3	[hPa]	[°C]	[m/s]		Einlaufstr. =		m
1A	1	55		E	0,01	23,0	0,6	X	Auslaufstr. =		m
									Zahl Messöff. =		Stk
									Maß Messöff. =		mm
									<u>Feuchte</u>		
					_		_		2-Thermome	etermetnoc 23	le °C
						9	_		Temperatur trocken = Temperatur feucht =	20	
	1=1								Tomporatar roading		
	1							1	relative Feuchte =	76,76	0/
=	-								absolute Feuchte =		kg/m³ i.N.tr.
					-				Feuchte =		Vol. %
									T Such the	_,.,	
									<u>Dichte</u>		
								1 3	O ₂ =	20,9	Vol-%
	7		1 1 1 1						CO ₂ =	0,04	Vol-%
	11=								Rest =	79,06	%
									Dichte Betrieb =	1,17653	kg/m³
	\leftarrow										
									Mittelwerte		
	1==			[]					p _{stat} =		hPa
	ўЩ.								$t_{tr} =$	23	
									Verhältnie w. Av	0,6	m/s
-					-				Verhältnis w _{max} /w _{min}		
	7-4								Volumenstr	öme	
	1								Betrieb =		m³/h
] [-1	1				Norm, feucht =	ATA I	m³/h
	\mathcal{I}								Norm, trocken =	20	m³/h
									Sondengröße		
	5								Absaugerate	2,8	m³/h
							-		berechnet		mm
		Ble	endenkonst	ante [gewählt		mm
							Tgi[K] · danselen				
			Blendenfa	aktor			PElabs [hf	[a]			

Bericht vom 02.10.2024

Anhang Blatt 2 von 39

Projekt-Nr. 6367155.40 Rev. A

Auftr	aggel	er: BAS	F SE							
Auftr	agsnu	ımmer: 6367	155.40							
Anla	ge:	Kau	refix Fabrik							
Mess		A01	7							
Sach	bearb	eiter:								
Mess			20.03.2024	Uhrzeit	von	13:20 bis	13:25	Me	essung Nr.	1
WICO	Jug.	-	20.00.2024			10.20	10.20		ooung (ii.	
Strö	mung	smessgerä	<u>it</u>		Achsen	anordnung		Kanalabme		
	Stau				سر	-		a (D)=	110 mm	
	aktor	A STATE OF THE REAL PROPERTY AND ADDRESS OF THE			1 -	A F	7 7 7	b=	mm	
X	Anen	nometer			4	b		A =	0,01 m ²	
					X			Wandstärke =	mm	
		Messnetz	1	B	-		а	10		
		chsen 1		Barom b ₀ =	eterstar 1009	hPa		Höhe Quelle =	nbeschreibung Im	
An	Zanir	Punkte 1	l.	20	1009	m a		Fläche Quelle =	m²	
4)		Eintauch-	Differenzdruck	Stat.	Tempe-	Strömungs-		Lage Kanal =	Tim	
hse	MP	tiefe	[Pa]	Druck	ratur	geschw.	MP	Höhe Messst. =	Im	
Achse	ivii	[mm]	M1 M2 M3		[°C]	[m/s]	ivia	Einlaufstr. =	m	
1A	1	55	in this inc	0,00	29,2	0,6	х	Auslaufstr. =	m	
	-			1				Zahl Messöff. =	Stk	
				1	7		1	Maß Messöff. =	mm	
	Y.							Feuchte		
								2-Thermome		
								Temperatur trocken =	29 °C	
								Temperatur feucht =	23,2 °C	
	Y Es							- 12		
	1 - 11							Aster Services	was deallers	
							Ú	relative Feuchte =	62,25 %	
								absolute Feuchte =	0,02 kg/m ³	
								Feuchte =	2,48 Vol. 9	%
	-			-			-	Dichte		
								O ₂ =	20,9 Vol-%	6
		3		+ -	9	*		CO ₂ =	0,04 Vol-%	
				+		-		Rest =	79,06 %	
				+ +	-	40		Dichte Betrieb =	1,14825 kg/m ²	3
				1		· ·		-,0,110 - 0,1102	.,. ,	
						*		100		
								Mittelwerte		
							Jan 1	p _{stat} =	0 hPa	
) III							$t_{tr} =$	29 °C	
	1-3							w =	0,6 m/s	
							E	Verhältnis w _{max} /w _{min}		
								Volumenstr		
	1	-						Betrieb =	22 m³/h	
								Norm, feucht =	20 m ³ /h	
								Norm, trocken =	20 m³/h	
								As are built fire a		
	-							<u>Sondengröße</u>	0.0	
								Absaugerate	2,8 m³/h	
		44	TST OF THE			P.		berechnet	40,63 mm	
		Ble	endenkonstante			T _{B1} [K] · d ⁴ _{Duss} [cm	1 z . m.	gewählt	mm	
			Blood Aver			PElabs [hP				
			Blendenfaktor			Blabs Litt	~1			

Bericht vom 02.10.2024

Anhang Blatt 3 von 39

Bericht vom 02.10.2024

Anhang Blatt 4 von 39

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF SE

Berichtsnummer: 6367155.40

Anlage: Kaurefix Fabrik

Messort: A017

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-024

Messung-Nr.		1	2	3		
Datum		24.01.24	24.01.24	24.01.24		
Uhrzeit		12:51 - 13:20	13:23 - 13:52	14:03 - 14:32		
Barometerstand	[hPa]	1012	1012	1012		
Feuchte Abgas	[Vol-%]	2,14	2,14	2,14		
Abgasreinigung vorhanden		Nein	Nein	Nein		
Volumenstrom	112					
im Normzustand	[m³/h]	39	20	20		

Ergebnisse

Messwert	[mg/m³]	278,6	237,2	231,9	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	285,8	244,0	239,3	
Massenstrom	[kg/h]	0,011	0,005	0,005	
Gesamtmessunsicherheit	[mg/m³N,tr]	6,64	5,70	5,70	

Bewertung der Drif	i		Werte wurden korrigiert
Drift max. abs. [%]			1,43
Messende	Endpunkt	15:04	144,42
Ablesewert nach	Nullpunkt	24.01.24	-2,09
Messbeginn	Endpunkt	12:10	147,15
Einstellwert vor	Nullpunkt	24.01.24	0,00

		rtes Prüfgas		
	Propan bered	chnet als Cges.		
Prüfgaskor	nzentration	Flaschen-	Haltbar	
Sollwert	Einheit	nummer	bis	
147,15	mg/m³	M905983	02 / 2025	

Analysenwert

Analysenwert

[mg]

[mg/m³]

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 5 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Ammoniak

BASF SE Auftraggeber: 6367155.40 Auftragsnummer: Anlage: Kaurefix A 017 Messort: Ammoniak Messkomponente: Bearbeiter: PM-Nr. der Gasuhr: 541-21-014 1 2 Messung-Nr. Datum 20.03.2024 20.03.2024 Uhrzeit 13:29 - 13:59 14:09 - 14:39 Barometerstand [hPa] 1.009 1.008 Zählerstand Anfang $[m^3]$ 2,6350 2,7130 2,7900 Zählerstand Ende [m³] 2,7120 Abgesaugtes Volumen 0,077 0.077 $[m^3]$ Temperatur an der Uhr [°C] 40 40 Sondentemperatur [°C] 29 29 1,000 Korrekturfaktor Gasuhr 1,000 Probenbezeichnung A17-NH3-1a/bA17-NH3-2a/b Dichtigkeitsprüfung durchgeführt ja jaı Normvolumen $[m^3]$ 0,067 0,067 Sauerstoffgehalt [Vol-%] 20,90 20,90 Bezugssauerstoffgehalt [Vol-%] Volumenstrom [m3/h] 20 20 im Normzustand [mg/Probe] Analysenergebnis < 0,001 0,002 Konzentration [mg/m³] < 0,015 0,030 Konzentration O₂-Bez. [mg/m³] Massenstrom < 0,0001 < 0,0001 [kg/h] Gesamtmessunsicherheit [mg/m³] 0,00 0,00 Blindwert Probenbezeichnung A17-NH3-BW mittleres Normvolumen [m³] 0,067

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

0,001

0,015

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 6 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

Auftraggeber: BASF SE

Auftragsnummer: 6367155.40

Anlage: Kaurefix

Messort: A017

Messkomponente: Formaldehyd

Bearbeiter: 541-21-019

PM-Nr. der Gasuhr:	541-21-019					
Messung-Nr.		1	2	3	1	
Datum		24.01.2024	24.01.2024	24.01.2024		
Uhrzeit		12:50 - 13:20	13:33 - 14:03	14:14 - 14:44		
Barometerstand	[hPa]	1.012	1.012	1.014		
Zählerstand Anfang	[m³]	2,4541	2,5369	2,6157		
Zählerstand Ende	[m³]	2,5368	2,6156	2,6923		
Abgesaugtes Volumen	[m³]	0,083	0,079	0,077		
remperatur an der Uhr	[°C]	24	25	25		
Sondentemperatur	[°C]	40	40	40		
Korrekturfaktor Gasuhr		1,000	1,000	1,000		
Probenbezeichnung		A17-HCHO-1	A17-HCHO-2	A17-HCHO-3		
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja		
Normvolumen	[m³]	0,076	0,072	0,071		
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90		
3ezugssauerstoffgehalt	[Vol-%]	н		1 12		
Volumenstrom im Normzustand	[m³/h]	39	20	20		
Analysenergebnis	[mg/Probe]	6,361	2,611	2,053		
Konzentration	[mg/m³]	83,697	36,264	28,915		
Konzentration O ₂ -Bez.	[mg/m³]	H		-36-		
Massenstrom	[kg/h]	0,0033	0,0007	0,0006		
Gesamtmessunsicherheit	[mg/m³]	8,10	3,51	2,80		
Blindwert						
Probenbezeichnung		A17-HCHO-BV		L Sa	1	
mittleres Normvolumen	[m _a]	0,073		-,		
Analysenwert	[mg]	< 0,001		1 2		
Analysenwert	[mg/m³]	< 0,014	- 4			

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 7 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

Auftraggeber: BASF SE

Auftragsnummer: 6367155.40

Anlage: Kaurefix

Messort: A017

Messkomponente: Methanol

Bearbeiter:										
PM-Nr. der Gasuhr:	541-21-014		7°C							
Messung-Nr.		1	2	3						
Datum		24.01.2024	24.01.2024	24.01.2024						
Uhrzeit		12:50 - 13:20	13:33 14:03	14:14 - 14:44						
Barometerstand	[hPa]	1.012	1.012	1.014						
Zählerstand Anfang	[m³]	2,0513	2,0837	2,1203						
Zählerstand Ende	[m³]	2,0836	2,1:202	2,1572						
Abgesaugtes Volumen	[m³]	0,032	0,037	0,037						
Temperatur an der Uhr	[°C]	27	32	34						
Sondentemperatur	[°C]	40	40	40						
Korrekturfaktor Gasuhr		1,000	1,000	1,000						
Probenbezeichnung		17-Metha-1a/b	17-Metha-2a/b	17-Metha-3a/b						
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja						
Normvolumen	[m³]	0,029	0,033	0,033		-				
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90						
Bezugssauerstoffgehalt	[Vol-%]		-	E						
Volumenstrom im Normzustand	[m³/h]	39	20	20						
Analysenergebnis	[mg/Probe]	25,500	19,000	19,000						
Konzentration	[mg/m³]	879,310	575,758	575,758						
Konzentration O ₂ -Bez.	[mg/m³]			-						
Massenstrom	[kg/h]	0,0343	0,0115	0,0115	5					
Gesamtmessunsicherheit	[mg/m³]	85,22	55,79	55,79						
Blindwert										
Probenbezeichnung		17-Metha-BW	-							
mittleres Normvolumen	[m³]	0,032								
Analysenwert	[mg]	< 0,005	-	-						
Analysenwert	[mg/m³]	< 0,158	-							

Projekt-Nr. 6367155.40 Rev. A Bericht vom 02.10.2024

Anhang Blatt 8 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Mono-Ethanolamin

BASF SE Auftraggeber: 6367155.40 Auftragsnummer: Anlage: Kaurefix Messort: A017 Mono-Ethanolamin Messkomponente: Bearbeiter: PM-Nr. der Gasuhr: 541-21-018 Messung-Nr. 1 2 3 Datum 24.01.2024 24.01.2024 24.01.2024 Uhrzeit 12:50 - 13:20 13:33 - 14:03 14:14 - 14:44 Barometerstand [hPa] 1.012 1.012 1.014 Zählerstand Anfang 7,8751 7,9106 7,9469 $[m^3]$ Zählerstand Ende $[m^3]$ 7,9105 7,9468 7,9846 0,035 0.036 Abgesaugtes Volumen [m³] 0,038 Temperatur an der Uhr [°C] 22 23 24 [°C] Sondentemperatur 40 40 40 1,000 Korrekturfaktor Gasuhr 1,000 1,000 Probenbezeichnung 17-Mono-1 17-Mono-2 17-Mono-3 Dichtigkeitsprüfung durchgeführt ja ja ja Normvolumen 0,032 0,033 0,035 $[m^3]$ Sauerstoffgehalt [Vol-%] 20,90 20,90 20,90 Bezugssauerstoffgehalt [Vol-%] Volumenstrom [m3/h] 39 20 20 im Normzustand

Analysenergebnis	[mg/Probe]	< 0,005	< 0,005	< 0,005			
Konzentration	[mg/m³]	< 0,156	< 0,152	< 0,143	200	3	
Konzentration O ₂ -Bez.	[mg/m³]	116					
Massenstrom	[kg/h]	< 0,0001	< 0,0001	< 0,0001			
Gesamtmessunsicherheit	[mg/m³]	0,02	0,01	0,01			13

Blindwert

Probenbezeichnung		17-Mono-BW				
mittleres Normvolumen	[m³]	0,033				
Analysenwert	[mg]	< 0,005		A		
Analysenwert	[mg/m³]	< 0,150	-			

Projekt-Nr. 6367155.40 Rev. A

Auftr	aggeb	er: BAS	F SE					- T			
		mmer: 6367	7155.4	40				*			
Anla	ge:	Kau	refix								
Mess	-6-7	A 05	3								
Sach	bearb	eiter:						dup.s.	N 0		
Mess	stag:	-	20.03	3.2024	1	Uhrzeit	von	10:40 bis	10:45	Me	ssung Nr. 1
Strö	munq Staur	smessgerä	<u>it</u>				Achsen	anordnung		Kanalabmes	ssungen 640 mm
F	aktor		-				1			a (D)= b =	1130 mm
	X-10-10-10-10-10-10-10-10-10-10-10-10-10-	nometer	J.				1			A =	0,723 m²
^	/ tricii	iometer						1 / 6		Wandstärke =	mm
Einte	eilung	Messnetz					1		а		
An	zahl A	chsen 2					eterstar				nbeschreibung
An	zahl F	Punkte 2				b ₀ =	1008	hPa		Höhe Quelle =	m
									_	Fläche Quelle =	m²
se	MAD	Eintauch-	Diffe	renzo	aruck	Stat.	Tempe-			Lage Kanal = Höhe Messst. =	4 orlin
Achse	MP	tiefe [mm]	MA	[Pa]	МЗ	Druck [hPa]	ratur [°C]	geschw. [m/s]	MP	Einlaufstr. =	1,85 m 0,3 m
1A	1	283	IVI	IVI Z	IVI 3	0.20	28.0	3,5	Х	Auslaufstr. =	1,26 m
1A	2	848				0,20	20,0	3,4	X	Zahl Messöff. =	2 Stk
2A	1	283						3,2	х	Maß Messöff. =	30 mm
2A	2	848	11			F		3,1	х		33.5
			E							<u>Feuchte</u>	
										2-Thermome	
								-		Temperatur trocken =	28 °C
										Temperatur feucht =	16,3 °C
	-		-				-				
	-									relative Feuchte =	30.34 %
								-		absolute Feuchte =	0,01 kg/m³ i.N.tr.
-	7								1	Feuchte =	1,14 Vol. %
										Bisha	
	11-3									Dichte O ₂ =	20,9 Vol-%
			-			-				CO ₂ =	0,04 Vol-%
										Rest =	79,06 %
	9							-11		Dichte Betrieb =	1,15701 kg/m ³
			U.E.A.						LT	A DOLLAR SERVERS	Charles and Market
	\square										
_	1.									Mittelwerte	0.0
										p _{stat} = t _{tr} =	0,2 hPa 28 °C
	\leftarrow									ι _{tr} – w =	
-							-	-		W = Verhältnis w _{max} /w _{min}	3,3 m/s 1,1 / 1
										way willing	33.50-1
	1					_				Volumenstr	öme
	1									Betrieb =	8589 m³/h
										Norm, feucht =	7753 m³/h
										Norm, trocken =	7665 m³/h
										Sondengröße	
									-	Absaugerate	2,8 m³/h
		-	10.7							berechnet	16,82 mm
		Ble	enden	konst	ante			T _{P1} [K] · d ⁴ _{Diss} [en		gewählt	mm

P_{Blabs}[hPa]

Blendenfaktor

Bericht vom 02.10.2024

Anhang Blatt 9 von 39

Bericht vom 02.10.2024

Anhang Blatt 10 von 39

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF SE

Berichtsnummer: 6367155.40

Anlage: Kaurefix
Messort: A053

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-024

Messung-Nr.		1	2	3	4	
Datum		20.03.24	20.03.24	20.03.24	20.03.24	
Uhrzeit		11:32 - 12:02	12:07 - 12:37	12:44 - 13:14	13:18 - 13:48	
Barometerstand	[hPa]	1008	1008	1008	1008	
Feuchte Abgas	[Vol-%]	1,14	1,14	1,14	1,14	
Abgasreinigung vorhanden		Ja	Ja	Ja	Ja	
Volumenstrom im Normzustand	[m³/h]	7.665	7.665	7.665	7.665	

Ergebnisse

Messwert	[mg/m³]	1,6	2,2	0,9	1,2	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	1,7	2,4	1,2	1,7	
Massenstrom	[kg/h]	0,013	0,019	0,010	0,013	
Gesamtmessunsicherheit	[mg/m³N,tr]	1,10	1,10	1,10	1,10	

¹⁾ O2 Bezugsrechnung erfolgt nicht wenn O2ist < O2Bezug

Bewertung der Drif			Werte wurden korrigiert
Drift max. abs. [%]			0,33
Messende	Endpunkt	13:56	146,35
blesewert nach Nullpunkt		20.03.24	-0,48
Messbeginn	Endpunkt	11:30	147,15
Einstellwert vor	Nullpunkt	20.03.24	0,00

		tes Prüfgas chnet als Cges.	
Prüfgaskor	nzentration	Flaschen-	Haltbar
Sollwert	Einheit	nummer	bis
147,154	mg/m³	M905983	02 / 2025

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 11 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

Auftraggeber: BASF SE
Auftragsnummer: 6367155.40
Anlage: Kaurefix

Messort: A 053

Messkomponente: Formaldehyd

PM-Nr. der Gasuhr: 541-21-018

Bearbeiter:

Analysenwert

PM-Nr. der Gasunr:	341-21-010					
Messung-Nr.		1	2	3	4	4
Datum		20.03.2024	20.03.2024	20.03.2024	20.03.2024	
Uhrzeit		11:32 - 12:02	12:07 - 12:37	12:44 - 13:14	13:18 - 13:48	
Barometerstand	[hPa]	1.008	1.008	1.008	1.008	
Zählerstand Anfang	[m³]	9,4866	9,5572	9,6255	9,6964	
Zählerstand Ende	[m³]	9,5569	9,6251	9,6958	9,7644	
Abgesaugtes Volumen	[m³]	0,070	0,068	0,070	0,068	
Temperatur an der Uhr	[°C]	27	30	31	32	
Sondentemperatur	[°C]	40	40	40	40	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	
Probenbezeichnung		A053-HCHO-1	A053-HCHO-2	A053-HCHO-3	A053-HCHO-4	
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja	ja	
Normvolumen	[m³]	0,063	0,061	0,063	0,061	
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	20,90	
Bezugssauerstoffgehalt	[Vol-%]	3.	*			
Volumenstrom im Normzustand	[m³/h]	7.665	7.665	7.665	7.665	
Analysenergebnis	[mg/Probe]	0,003	0,006	0,005	0,005	
Konzentration	[mg/m³]	0,048	0,098	0,079	0,082	
Konzentration O ₂ -Bez.	[mg/m³]	-2 -1		-	- 8 - 1	
Massenstrom	[kg/h]	0,0004	0,0008	0,0006	0,0006	
Gesamtmessunsicherheit	[mg/m³]	0,00	0,01	0,01	0,01	
Blindwert						
Probenbezeichnung	A	053-HCHO-B\		-5-6		
mittleres Normvolumen	[m³]	0,062		-		
Analysenwert	[mg]	< 0,001		1-1-	15 1	
A V						

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

< 0,016

[mg/m³]

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 12 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

BASF SE Auftraggeber:

6367155.40 Auftragsnummer:

Anlage: Kaurefix

Messort: A 053

Methanol Messkomponente:

Bearbeiter:

PM-Nr. der Gasuhr:	541-21-016						
Messung-Nr.		1	2	3	4		
Datum		20.03.2024	20.03.2024	20.03.2024	20.03.2024		
Uhrzeit		11:32 - 12:02	12:07 - 12:37	12:44 - 13:14	13:18 - 13:48		
Barometerstand	[hPa]	1.008	1.008	1.008	1.008		
Zählerstand Anfang	[m³]	7,9851	8,0300	8,0635	8,1010	1 - 1	
Zählerstand Ende	[m³]	8,0298	8,0633	8,1007	8,1372		
Abgesaugtes Volumen	[m³]	0,045	0,033	0,037	0,036		
Temperatur an der Uhr	[°C]	28	33	36	36		
Sondentemperatur	[°C]	40	40	40	40		
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000		
Probenbezeichnung		A053-Metha-1	A053-Metha-2	A053-Metha-3	A053-Metha-4		
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja		
Normvolumen	[m³]	0,041	0,029	0,033	0,032		
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]		-	-			
Volumenstrom im Normzustand	[m³/h]	7.665	7.665	7.665	7.665		
Analysenergebnis	[mg/Probe]	0,006	0,120	< 0,005	0,073		
Konzentration	[mg/m³]	0,146	4,138	< 0,152	2,281		
Konzentration O ₂ -Bez.	[mg/m³]	-		4.0	128		
Massenstrom	[kg/h]	0,0011	0,0317	< 0,0012	0,0175		
Gesamtmessunsicherheit	[mg/m³]	0,01	0,40	0,01	0,22		
Blindwert			1				
Probenbezeichnung	P	N053-Metha-BV	1 /2		4		
mittleres Normvolumen	[m³]	0,034	-	- 8 -	1		
Analysenwert	[mg]	< 0,005			3.2		
Analysenwert	[mg/m³]	< 0,148		2	T 2 = 1		

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 13 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Mono-Ethanolamin

Auftraggeber: BASF SE

Auftragsnummer: 6367155.40

Anlage: Kaurefix

Messort: A 053

Messkomponente: Mono-Ethanolamin

Bearbeiter:

PM-Nr. der Gasuhr: 541-21-019

Messung-Nr.		1	2	3	4	
Datum		20.03.2024	20.03.2024	20.03.2024	20,03.2024	
Uhrzeit		11:32 - 12:02	12:07 12:37	12:44 - 13:14	13:18 - 13:48	
Barometerstand	[hPa]	1.008	1.008	1.008	1.008	
Zählerstand Anfang	[m³]	3,2265	3,2604	3,2946	3,3288	
Zählerstand Ende	[m³]	3,2603	3,2945	3,3287	3,3621	
Abgesaugtes Volumen	[m³]	0,034	0,034	0,034	0,033	
Temperatur an der Uhr	[°C]	27	29	31	31	
Sondentemperatur	[°C]	40	40	40	40	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	
Probenbezeichnung		A053-Mono-1	A053-Mono-2	A053-Mono-3	A053-Mono-4	
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja	
Normvolumen	[m³]	0,031	0,031	0,030	0,030	
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	20,90	
Bezugssauerstoffgehalt	[Vol-%]		ш	×	8 = 1	
Volumenstrom im Normzustand	[m³/h]	7.665	7.665	7.665	7.665	
Analysenergebnis	[mg/Probe]	< 0,005	< 0,005	< 0,005	< 0,005	
Konzentration	[mg/m³]	< 0,161	< 0,161	< 0,167	< 0,167	
Konzentration O ₂ -Bez.	[mg/m³]	100	÷	-	LT E	
Massenstrom	[kg/h]	< 0,0012	< 0,0012	< 0,0013	< 0,0013	
Gesamtmessunsicherheit	[mg/m³]	0,02	0,02	0,02	0,02	
Blindwert						
Probenbezeichnung	,	A053-Mono-BV	Δ.	1040	141	
mittleres Normvolumen	[m³]	0,031	÷.	-	4	
Analysenwert	[mg]	< 0,005		21		
Analysenwert	[mg/m³]	< 0,164	4	1 - 2		

Projekt-Nr. 6367155.40 Rev. A

Auftr	aggeb	er: BAS	F SE								
Auftr	agsnu	mmer: 6367									
Anla	ge:	Kau	refix Fabri	k			1				
Mess	sort:	A07	9								
Sach	bearb	eiter:									
Mess	stag:		25.01.202	24	Uhrzeit	von	10:45 bis	10:50	Me	ssung Nr.	2
Strö	munq Staur	smessgera ohr	<u>it</u>			Achsen	anordnung		Kanalabme a (D)=	ssungen 155	mm
F	aktor		1			1) r		b=		mm
X	Anen	nometer				(/) b		A =	0,019	
		Messnetz				X		a	Wandstärke =	and the same	mm
		chsen 1 Punkte 1			Barom b ₀ =	eterstar 1019	<u>nd</u> hPa		Messstelle Höhe Quelle =		m bung
An	Zani F	unkte			20	1019	m a		Fläche Quelle =		m²
m)		Eintauch-	Differenz	druck	Stat.	Tempe-	Strömungs-		Lage Kanal =		"
Achse	MP	tiefe	[Pa		Druck	ratur	geschw.	MP	Höhe Messst. =		m
Ac	1,000	[mm]	M1 M2			[°C]	[m/s]	100	Einlaufstr. =		m
1A	1	78	2-11	III i	0,02	23,1	2,15	Х	Auslaufstr. =		m
									Zahl Messöff. =		Stk
									Maß Messöff. =		mm
	Ý.								<u>Feuchte</u>		
	3								2-Thermome	etermethod	le
									Temperatur trocken =	23	
			1.74						Temperatur feucht =	22	°C
	-			4	-	÷			relative Feuchte =	91,94	0/2
=	-			-					absolute Feuchte =		kg/m³ i.N.tr.
-	-			+			-	-	Feuchte =		Vol. %
									1 cucino	2,01	V 01. 70
	7										
									Diebte		
				+			-36		<u>Dichte</u> O ₂ = [20.91	Vol-%
				1	-		*		CO ₂ =		Vol-%
							-		Rest =	79,06	
	9						40		Dichte Betrieb =	1,18287	
			0.514						100000000000000000000000000000000000000		7.4
							-		Mittelwerte		
-				+					p _{stat} =	0	hPa
-				+					t _{tr} =	23	
	5=3						-		w =	2,15	
									Verhältnis w _{max} /w _{min}		
									in the second		
									Volumenstr		m3/h
				-					Betrieb =		m ³ /h
		-							Norm, feucht =		m³/h m³/h
	4						-		Norm, trocken =	133	m³/h
					-				Sondengröße		
									Absaugerate	2,8	m³/h
								•	berechnet	THE TOTAL LABOR.	mm
		Ble	endenkons	stante	1			570	gewählt		mm
							T _{B1} [K] · d ⁴ _{Düse} [cm				
			Blenden	faktor			P _{Elabs} [hF	a]			

Bericht vom 02.10.2024

Anhang Blatt 14 von 39

Projekt-Nr. 6367155.40 Rev. A

	aggel		FSE							
		ımmer: 6367								
Anla		-	refix Fabrik			- - -				
Mess		A 07	9							
		peiter:				dan a sana				
Mess	stag:	_	20.03.2024	Uhrzeit	von	11:10 bis	11:15	Me	ssung Nr.	1
Strö	muna	smessgerä	it		Achsen	anordnung		Kanalabmes	sungen	
	Stau		Ī		د	-		a (D)=	155 n	nm
F	aktor		1		1	1	7.7	b=	n	nm
X	Anen	nometer			d) b		A =	0,019 n	n²
Einte	eilund	Messnetz			X		a	Wandstärke =	n	nm
		chsen 1		Barom	etersta	nd		Messsteller	nbeschreib	ung
		Punkte 1		b ₀ =		hPa		Höhe Quelle =		n
1100								Fläche Quelle =	n	n²
e		Eintauch-	Differenzdruck	Stat.	Tempe-		100	Lage Kanal =		
Achse	MP	tiefe	[Pa]	Druck	ratur	geschw.	MP	Höhe Messst. =	n	
4		[mm]	M1 M2 M3		[°C]	[m/s]		Einlaufstr. =	n	
1A	1	78		0,01	25,2	3,5	X	Auslaufstr. =	n	
								Zahl Messöff. =	5	Stk
							1	Maß Messöff. =	n	nm
								20000		
	-	6						Feuchte 2-Thermome		
	-				-	_		Temperatur trocken =	25°	
-	-					_	-	Temperatur feucht =	22,4 °	
-	-							Temperatur redent -	22,4	C
	9									
	9			-				relative Feuchte =	80.56 %	6
						-		absolute Feuchte =	100000000000000000000000000000000000000	g/m³ i.N.tr.
							1	Feuchte =	2,54 \	
	7									
								18:33		
	71							<u>Dichte</u>		
								O ₂ =	20,9	
			V-1, -1, 1-4					CO ₂ =	0,04 \	
								Rest =	79,06 %	
								Dichte Betrieb =	1,1634 k	(g/m³
	4									
								Mittelwerte		
-								p _{stat} =	0 t	ıPa
-								t _{tr} =	25 °	
_	5-3							w =	3,5 n	
					7	-		Verhältnis w _{max} /w _{min}	0,0 11	
							-			
	1			_				Volumenstr	öme	
	1							Betrieb =	239 n	n³/h
								Norm, feucht =	218 n	n³/h
						1		Norm, trocken =	212 n	n³/h
) iii									
	Щ.							Sondengröße		
								Absaugerate	The second secon	n³/h
			TO THE TOTAL TO		-	0		berechnet	-	nm
		Ble	endenkonstante			La straint de la	m	gewählt	n	nm
			Blood Mile			T _{B1} [K] · d ⁴ _{Düse} lem P _{Blabs} [hF				
			Blendenfaktor			Elabsin	-1			

Bericht vom 02.10.2024

Anhang Blatt 15 von 39

Bericht vom 02.10.2024

Anhang Blatt 16 von 39

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF SE

Berichtsnummer: 6367155.40

Anlage: Kaurefix Fabrik

Messort: A079

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-024

Messung-Nr.		1	2	3	4	
Datum		25.01.24	25.01.24	25.01.24	25.01.24	
Uhrzeit		08:26 - 08:56	10:49 - 11:19	11:50 - 12:20	12:30 - 13:00	
Barometerstand	[hPa]	1019	1019	1019	1019	
Feuchte Abgas	[Vol-%]	2,54	2,54	2,54	2,54	
Abgasreinigung vorhanden		Nein	Nein	Nein	Nein	
Volumenstrom im Normzustand	[m³/h]	81	133	133	133	

Ergebnisse

Messwert	[mg/m³]	2,4	5,2	15,4	108,2	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	2,6	6,4	17,2	111,1	
Massenstrom	[kg/h]	0,000	0,001	0,002	0,015	
Gesamtmessunsicherheit	[mg/m³N,tr]	1,10	1,12	1,20	2,58	

Bewertung der Dri	Werte wurden komgiert						
Drift max. abs. [%]	Orift max. abs. [%]						
Messende	Endpunkt	13:22	147,80				
Ablesewert nach	Nullpunkt	25.01.24	-2,0				
Messbeginn	Endpunkt	08:19	147,15				
Einstellwert vor	Nullpunkt	25.01.24	0,00				

		tes Prüfgas chnet als Cges.			
Prüfgaskor	nzentration	Flaschen-	Haltbar		
Sollwert	Einheit	nummer	bis		
147,154	mg/m³	M905983	02 / 2025		

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 17 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Ammoniak

BASF SE Auftraggeber: 6367155.40 Auftragsnummer: Kaurefix Anlage: A 079 Messort: Ammoniak Messkomponente: Bearbeiter:

PM-Nr. der Gasuhr:	541-21-014					
Messung-Nr.		1	2	3		
Datum		20.03.2024	20.03.2024	20.03.2024		
Uhrzeit		11:18 - 11:48	12:00 - 12:30	12:43 - 13:13		
Barometerstand	[hPa]	1.009	1.009	1.009		
Zählerstand Anfang	[m³]	2,4161	2,4890	2,5611		
Zählerstand Ende	[m³]	2,4878	2,5608	2,6338		
Abgesaugtes Volumen	[m³]	0,072	0,072	0,073		
Temperatur an der Uhr	[°C]	28	37	42		
Sondentemperatur	[°C]	25	25	25		
Korrekturfaktor Gasuhr		1,000	1,000	1,000		
Probenbezeichnung		A79-NH3-1a/b	A79-NH:3-2a/b	A79-NH3-3a/b		
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja		
Normvolumen	[m³]	0,065	0,063	0,063		
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]					
Volumenstrom im Normzustand	[m³/h]	212	21:2	212		
Analysenergebnis	[mg/Probe]	0,014	0,013	0,027		
Konzentration	[mg/m³]	0,215	0,206	0,429		
Konzentration O ₂ -Bez.	[mg/m³]	-	4	.03.1		
Massenstrom	[kg/h]	< 0,0001	< 0,0001	0,0001		
Gesamtmessunsicherheit	[mg/m³]	0,02	0,02	0,03		
Blindwert						
Probenbezeichnung		A79-NH3-BW				12-14
mittleres Normvolumen	[m³]	0,064		-		
Analysenwert	[mg]	0,003				
Analysenwert	[mg/m³]	0,047				

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 18 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

 Auftraggeber:
 BASF SE

 Auftragsnummer:
 6367155.40

 Anlage:
 Kaurefix Fabrik

 Messort:
 A079

Messkomponente: Formaldehyd

Bearbeiter:

PM-Nr. der Gasuhr:	541-21-019									
Messung-Nr.		1	2	3	4					
Datum		25.01.2024	25.01.2024	25.01.2024	25.01.2024					
Uhrzeit		08:26 - 08:56	10:49 - 11:19	11:50 - 12:20	12:30 - 13:00					
Barometerstand	[hPa]	1.019	1.020	1.020	1.020					
Zählerstand Anfang	[m³]	2,6924	2,7681	2,8451	2,9211					
Zählerstand Ende	[m³]	2,7680	2,8450	2,9210	2,9976					
Abgesaugtes Volumen	[m³]	0,076	0,077	0,076	0,076					
Temperatur an der Uhr	[°C]	23	27	27	28					
Sondentemperatur	[°C]	40	40	40	40					
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000					
Probenbezeichnung		A079-HCHO-1	A079-HCHO-2	A079-HCHO-3	A079-HCHO-4					
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja	ja					
Normvolumen	[m³]	0,071	0,071	0,070	0,069					
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	20,90					
Bezugssauerstoffgehalt	[Vol-%]			-						
Volumenstrom im Normzustand	[m³/h]	81	133	133	133					
Analysenergebnis	[mg/Probe]	0,035	< 0,003	< 0,002	< 0,003					
Konzentration	[mg/m³]	0,493	< 0,042	< 0,029	< 0,043					
Konzentration O ₂ -Bez.	[mg/m³]	14	9	109	-					
Massenstrom	[kg/h]	< 0,0001	< 0,0001	< 0,0001	< 0,0001					
Gesamtmessunsicherheit	[mg/m³]	0,05	0,00	0,00	0,00					
Blindwert										
Probenbezeichnung	А	079-HCHO-B\								
mittleres Normvolumen	[m³]	0,070								
Analysenwert	[mg]	0,030		The second						
Analysenwert	[mg/m³]	0,427								

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

Auftraggeber: BASF SE

Auftragsnummer: 6367155.40

Anlage: Kaurefix Fabrik

Messort: A079

Messkomponente: Methanol

Bearbeiter:

PM-Nr. der Gasuhr:	541-21-014		n			
Messung-Nr.		1	2	3	4	
Datum		25.01.2024	25.01.2024	25.01.2024	25.01.2024	
Uhrzeit		08:26 - 08:56	10:49 - 11:19	11:50 - 12:20	12:30 - 13:00	
Barometerstand	[hPa]	1.019	1.0:20	1.020	1.020	
Zählerstand Anfang	[m³]	2,1572	2,1951	2,2330	2,2760	
Zählerstand Ende	[m³]	2,1950	2,2329	2,2758	2,3218	
Abgesaugtes Volumen	[m³]	0,038	0,0:38	0,043	0,046	
Temperatur an der Uhr	[°C]	26	30	33	36	
Sondentemperatur	[°C]	40	40	40	40	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	
Probenbezeichnung		79-Metha-1	79-Metha-2	79-Metha-3	79-Metha-4	
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja	
Normvolumen	[m³]	0,035	0,0:34	0,039	0,041	- 4
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	20,90	
Bezugssauerstoffgehalt	[Vol-%]	2 1	- 13	- 3		
Volumenstrom im Normzustand	[m³/h]	81	133	133	133	
Analysenergebnis	[mg/Probe]	0,006	< 0,005	< 0,005	< 0,005	
Konzentration	[mg/m³]	0,171	< 0,147	< 0,128	< 0,122	
Konzentration O ₂ -Bez.	[mg/m³]	H			н	
Massenstrom	[kg/h]	< 0,0001	< 0,0001	< 0,0001	< 0,0001	
Gesamtmessunsicherheit	[mg/m³]	0,02	0,01	0,01	0,01	
Blindwert						
Probenbezeichnung		79-Metha-BW	1 3 1			
mittleres Normvolumen	[m³]	0,037	100	1 65	1-45	
Analysenwert	[mg]	< 0,005				
Analysenwert	[mg/m³]	< 0,134		12	W	

Projekt-Nr. 6367155.40 Rev. A

Blendenfaktor

	aggel		F SE				-			
		ımmer: 6367					-			
Anla	ge:	Kaur	efix F	abrik						
Mess		A080)		_					
Sach	bearb	eiter:								
Mess	stag:	-	25.01	.2024	Uhrzei	t von	8:00 bis	8:15	Me	essung Nr. 1
	Mung	smessgerä ohr	<u>it</u>			Achser	nanordnung		Kanalabme a (D)=	ssungen 265 mm
	aktor	1,000	Nr.	S		1		-	b=	mm
	Anen	nometer				{) b		A =	0,055 m ²
		Messnetz				X		а	Wandstärke =	mm
		chsen 1 Punkte 1			Baron b ₀ =	1019	nd hPa		Messstelle Höhe Quelle =	nbeschreibung m
									Fläche Quelle =	m²
ø		Eintauch-	Diffe	renzdru	ck Stat.	Tempe-	Strömungs-	17.7	Lage Kanal = 5	Senkrecht
Achse	MP	tiefe		[Pa]	Druck		geschw.	MP	Höhe Messst. =	m
_		[mm]		M 2 M	3 [hPa]	[°C]	[m/s]		Einlaufstr. =	m
1A	1	133	23	1; 1 E	0,60	27,0	6,26	X	Auslaufstr. =	0,13 m
						\$75 T			Zahl Messöff. =	2 Stk
								-	Maß Messöff. =	30 mm
	Y								<u>Feuchte</u>	
									2-Thermome	
									Temperatur trocken =	27 °C
							-		Temperatur feucht =	15,7 °C
								. 1	relative Feuchte =	30,68 %
				-=1					absolute Feuchte =	0,01 kg/m3 i.N.tr.
									Feuchte =	1,08 Vol. %
									Dichte	
-									O ₂ =	20,9 Vol-%
		3			+		*		CO ₂ =	0,04 Vol-%
	1				3/12		1		Rest =	79,06 %
									Dichte Betrieb =	1,17426 kg/m ³
	#				+					
	1.3								Mittelwerte	
	1==				-11				p _{stat} =	0,6 hPa
	ŽΞ				4		3 3		$t_{tr} =$	27 °C
	13								w=	6,26 m/s
									Verhältnis w _{max} /w _{min}	
									Volumenstr	öme
	1								Betrieb =	1239 m³/h
					1		7		Norm, feucht =	1135 m³/h
					7				Norm, trocken =	1123 m³/h
									Candon VO.	
					-				Sondengröße Absaugerate	2.0 m3/h
				-				-	Absaugerate	2,8 m³/h
		Pri-		leanch-			1		berechnet	12,58 mm
		Ble	enden	konstan	le		T _{B1} [K] · d ⁴ _{Duss} lcm	l.wzrm	gewählt	12 mm
			Rien	denfakto	or		PElabs [hF		1	

Bericht vom 02.10.2024

Anhang Blatt 20 von 39

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 21 von 39

Auftraggeber: BASF SE

Auftragsnummer: 6367155.40

Anlage: Kaurefix Fabrik

Messort: A080

Messkomponente: Staub

PM-Nr. der Gasuhr: 28790239

Messung-Nr.		1	2	3
Datum		25.01.2024	25.01.2024	25.01.2024
Uhrzeit		07:58 - 08:28	11:30 - 12:00	12:40 - 13:10
Barometerstand	[hPa]	1019	1019	1019
Probenahmevolumen	[m³]	1,212	1,230	1,233
Temperatur an der Uhr	[°C]	15,5	17,8	19,0
Druck an der Uhr	[hPa]	0,0	0,0	0,0
Normvolumen	[m³]	1,154	1,162	1,160
Probenbezeichnung		23-1084	24-084	24-085
Bezugssauerstoffgehalt	[Vol-%]	18		
Sauerstoffgehalt	[Vol-%]	20,9	20,9	20,9
Messunsicherheit Sauerstoff	[Vol-%]	90		ē
Statischer Druck im Abgaskanal	[hPa]	0,6	0,6	0,6
Abgastemperatur	[°C]	27	27	27
Abgasfeuchte	[Vol-%]	1,08	1,08	1,08
Mittlere Abgasgeschwindigkeit	[m/s]	6,26	6,26	6,26
Fläche Messquerschnitt	[m²]	0,055	0,055	0,055
Volumenstrom im Normzustand bezogen auf trockenes Abgas	[m³/h]	1.123	1.123	1.123
Durchmesser Düse	[mm]	12	12	12
Mittlere Temperatur nach Sonde	[°C]	27,0	27,0	27,0
Mittlere isokinetische Abweichung	[%]	-0,1	0,6	0,4
Dichtigkeitsprüfung durchgeführt		ja	ja	ja

Ergebnisse

Analysenergebnis	[mg/Probe]	<0,4	<0,4	<0,4
relative Standardabweichung		0,168	0,168	0,168
Konzentration im Betriebszustand	[mg/m³]	< 0,3	< 0,3	< 0,3
Konzentration bezogen auf feuchtes Abgas im Normzustand	[mg/m³]	< 0,3	< 0,3	< 0,3
Konzentration bezogen auf trockenes Abgas im Normzustand	[mg/m³]	< 0,3	< 0,3	< 0,3
Konzentration bezogen auf trockenes Abgas im Normzustand und den Bezugssauerstoffgehalt	[mg/m³]			
Messunsicherheit	[mg/m³]	0,059	0,058	0,058
Massenstrom	[kg/h]	< 0,000	< 0,000	< 0,000

Blindwert

Probenbezeichnung: 23-1085

Analysenergebnis: <0,4 mg

mittl. Normvol. $[m^3] = 1,159$

Konz: < 0,3 mg/m³

Projekt-Nr. 6367155.40 Rev. A

Auftr	aggeb	er: BAS	F SE									
	7.7	mmer: 6367	2000	40								
Anla		T 10 10 10 10 10 10 10 10 10 10 10 10 10	refix F									
Mes	72.4	A08	2					70				
Sach	bearb	eiter:										
Mes	stag:	1	24.01	.2024	1	Uhrzeit	von	11:15 bis	11:20	Me	ssung Nr. 1	
_	munq Staur	smessger	<u>it</u>				Achsen	anordnung		Kanalabme a (D)=	ssungen 168,3 mm	
100	aktor		Nr.	G.		Ď.	1			b =	mm	
		nometer		U			4			A =	0,022 m ²	
7							V	1 0		Wandstärke =	mm	
		Messnetz					-		а	7	0.0 000	
		chsen 1					etersta			Messstelle Höhe Quelle =	nbeschreibung	
An	zani F	Punkte 1	1			b ₀ =	1012	hPa		Fläche Quelle = 0	m 0.023 m²	
a)		Eintauch-	Diffe	renzo	druck	Stat.	Tempe-	Strömungs-		Lage Kanal = S	.020	
Achse	MP	tiefe	5.110	[Pa]	don	Druck	ratur	geschw.	MP	Höhe Messst. =	m	
A	1 65.00	[mm]	M 1	M2	M 3	[hPa]	[°C]	[m/s]		Einlaufstr. =	0,9 m	
1A	1	84	20	20	20	-0,25	16,9	5,75	X	Auslaufstr. =	1,5 m	
										Zahl Messöff. =	1 Stk	
_						1				Maß Messöff. =	30 mm	
	Ç-	-						-		Feuchte		
	-3	6								2-Thermome	etermethode	
										Temperatur trocken =	17 °C	
										Temperatur feucht =	8,2 °C	
	ž 🚞		HY	, ·								
	1 - 3									aniamia maniatri	00 FC W	
=	-									relative Feuchte = absolute Feuchte =	28,58 % 0 kg/m³ i.l	NI for
=	-		-			-			-	Feuchte =	0,55 Vol. %	v.u
										, saomo	-100 101. 10	
	7											
	1-1									600		
										<u>Dichte</u>	20,9 Vol-%	
							-			O ₂ = CO ₂ =	0,04 Vol-%	
								-		Rest =	79,06 %	
							9			Dichte Betrieb =	1,20775 kg/m³	
										A TANK CASTREE STATE	F-00 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
										2203 000		
										Mittelwerte	0.2 hDa	
=	-									p _{stat} = t _{tr} =	-0,3 hPa 17 °C	
=	=							-		w =	5,75 m/s	
T	50						7			Verhältnis w _{max} /w _{min}	0,10 11110	
	100											
										Volumenstr		
	1									Betrieb =	455 m³/h	
=										Norm, feucht =	428 m³/h	
	4				-					Norm, trocken =	426 m³/h	
										Sondengröße		
	5									Absaugerate	2,8 m³/h	
									_	berechnet	13,12 mm	
		Ble	enden	konst	ante			La series de la constante de l		gewählt	13 mm	
								T _{BI} [K] · d ⁴ _{Dūss} [cm	$[\cdot w^4 [\frac{m}{s}]$			

PElabs[hPa]

Blendenfaktor

Bericht vom 02.10.2024

Anhang Blatt 22 von 39

Projekt-Nr. 6367155.40 Rev. A

uffr	agsnu	er: BAS mmer: 6367	155 4	10				7				
		1000	efix F					_				
	ge:	- TO 1975		ablik								
776	sort:	A082	_					-				
23	bearb	access.		10/20			-		45.45	14.7	U. 1	
less	stag:		24.01	.2024	4	Uhrzeit	von	13:25 bis	13:28	. Me	ssung Nr.	2
trö	muna	smessgerä	it				Achsen	anordnung		Kanalabme	ssungen	
	Staur		Ï				/ tonicon	-		a (D)=	168,3	mm
	aktor		Nr.	99-	031		1) r		b=		mm
T	Anem	ometer					d	/) b		A =	0,022	m²
							V	1 "		Wandstärke =		mm
		Messnetz					~	-	а		As the	
		chsen 1					eterstar			Messstelle Höhe Quelle =		
An	zahi P	unkte 1	L			b ₀ =	1012	hPa		Fläche Quelle = 0		m m²
		Eintauch-	Diffo	ronze	druck	Stat.	Tompo	Strömungs-		Lage Kanal = S		III
Se	MP	tiefe	Dille	[Pa]		Druck	Tempe- ratur	geschw.	MP	Höhe Messst. =		m
Acuse	IVII	[mm]	M 1		М3		[°C]	[m/s]	IVII	Einlaufstr. =		m
A	1	84	30	IVI Z	141 0	-0.30	18,0	7,06	Х	Auslaufstr. =	1,5	
	-		7			-11	,-	- 17-2		Zahl Messöff. =		Stk
					-			70	-	Maß Messöff. =	30	mm
			124							American section 1		
										<u>Feuchte</u>		
	-									2-Thermome		
										Temperatur trocken =	18	
										Temperatur feucht =	9	°C
										anten ender 2	00.40	0/
	-									relative Feuchte = absolute Feuchte =	29,18	% kg/m³ i.N.
-						-		-		Feuchte =		Vol. %
-										r eucitie –	0,0	VOI. 70
						-		-				
										Dichte		
- 3	1									O ₂ =		Vol-%
										CO ₂ =	0,04	Vol-%
	1==									Rest =	79,06	
										Dichte Betrieb =	1,20337	kg/m³
										100 100 100 100 100		
								-		8824-1		
										Mittelwerte	-0,3	hDa
-	-									p _{stat} = t _{tr} =	-0,3 18	
	4=8			-						ν _{tr} =	7,06	
	5							-		Verhältnis w _{max} /w _{min}	1,00	111/5
-										way with		
	4		-						-	Volumenstr	öme	
	7									Betrieb =	559	m³/h
								Y		Norm, feucht =		m³/h
	\mathcal{T}					*		1		Norm, trocken =		m³/h
	1-									100.5 11.0 04.144.1		
			LI.			-				Sondengröße		
										Absaugerate		m³/h
										berechnet	11,84	

P_{Blabs}[hPa]

Blendenfaktor

Bericht vom 02.10.2024

Anhang Blatt 23 von 39

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 24 von 39

BASF SE Auftraggeber: Auftragsnummer: 6367155.40 Anlage: Kaurefix Fabrik

A082 Messort: Staub Messkomponente: PM-Nr. der Gasuhr:

Messung-Nr.		1	2	3
Datum		24.01.2024	24.01.2024	24.01.2024
Uhrzeit		11:29 - 11:59	12:45 - 13:15	13:17 - 13:47
Barometerstand	[hPa]	1012	1012	1012
Probenahmevolumen	[m³]	1,372	1,361	1,362
Temperatur an der Uhr	[°C]	16,0	16,0	16,0
Druck an der Uhr	[hPa]	0,0	0,0	0,0
Normvolumen	[m³]	1,295	1,284	1,285
Probenbezeichnung		23-1086	23-1082	23-1083
Bezugssauerstoffgehalt	[Vol-%]			
Sauerstoffgehalt	[Vol-%]	20,9	20,9	20,9
Messunsicherheit Sauerstoff	[Vol-%]			
Statischer Druck im Abgaskanal	[hPa]	-0,3	-0,3	-0,3
Abgastemperatur	[°C]	17	17	17
Abgasfeuchte	[Vol-%]	0,55	0,55	0,55
Mittlere Abgasgeschwindigkeit	[m/s]	5,75	5,75	5,75
Fläche Messquerschnitt	[m²]	0,022	0,022	0,022
Volumenstrom im Normzustand bezogen auf trockenes Abgas	[m³/h]	426	426	426
Durchmesser Düse	[mm]	13	13	13
Mittlere Temperatur nach Sonde	[°C]	17,0	17,0	17,0
Mittlere isokinetische Abweichung	[%]	0,8	0,0	0,0
Dichtigkeitsprüfung durchgeführt		ja	ja	ja

Ergebnisse

Analysenergebnis	[mg/Probe]	<0,4	<0,4	<0,4
relative Standardabweichung		0,168	0,168	0,168
Konzentration im Betriebszustand	[mg/m³]	< 0,3	< 0,3	< 0,3
Konzentration bezogen auf feuchtes Abgas im Normzustand	[mg/m³]	< 0,3	< 0,3	< 0,3
Konzentration bezogen auf trockenes Abgas im Normzustand	[mg/m³]	< 0,3	< 0,3	< 0,3
Konzentration bezogen auf trockenes Abgas im Normzustand und den Bezugssauerstoffgehalt	[mg/m³]			
Messunsicherheit	[mg/m³]	0,052	0,053	0,053
Massenstrom	[kg/h]	< 0,000	< 0,000	< 0,000

Blindwert

Probenbezeichnung: 23-1027

Analysenergebnis: <0,4 mg

mittl. Normvol. [m³] = 1,288

Konz: < 0,3 mg/m3

Projekt-Nr. 6367155.40 Rev. A

		mmer: 6367	155.4	40						
nlag	ge:	Kaur	efix F	abrik						
ess	ort:	A084	4				×			
ach	bearb	eiter:								7.7
ess	tag:		24.01	.2024	Uhrzeit	von	14:15 bis	14:20	Me	ssung Nr. 1
	nung Staur	smessgerä ohr	<u>it</u>			<u>Achser</u>	nanordnung		Kanalabmes a (D)=	ssungen 168,3 mm
	aktor Anem	1,000 nometer	Nr.	99-031		() 6		b = A = Wandstärke =	0,022 m² mm
٩nz	ahl A	Messnetz chsen 1]			etersta		а		nbeschreibung
An	zani F	Punkte 1	l		b ₀ =	1014	hPa		Fläche Quelle =	0,023 m ²
מ		Eintauch-	Diffe	erenzdruck	Stat.	Tempe-	Strömungs		Lage Kanal = S	
201130	MP	tiefe		[Pa]	Druck	ratur	geschw.	MP	Höhe Messst. =	m
_		[mm]	M 1	M2 M3		[°C]	[m/s]		Einlaufstr. =	0,9 m
A	1	84	40		-0,25	18,0	8,15	X	Auslaufstr. =	1,5 m
									Zahl Messöff. =	1 Stk
-									Maß Messöff. =	30 mm
								4 1	<u>Feuchte</u>	
		64	-				*		2-Thermome	etermethode
							3		Temperatur trocken =	18 °C
									Temperatur feucht =	9 °C
			FY							
					-				relative Feuchte =	29,13 %
	-						-		absolute Feuchte =	0 kg/m³ i.N
-	-								Feuchte =	0,59 Vol. %
					-		- Y		1 cucino	0,05 VOI. 70
									2.77	
	15								<u>Dichte</u>	00.011/-1.0/
-0									O ₂ =	20,9 Vol-%
			2-1						CO ₂ =	0,04 Vol-%
			-			-			Rest = Dichte Betrieb =	79,06 %
-							-	-	Dicnte Betrieb -	1,2058 kg/m ³
	=						-			
									Mittelwerte	
- "									p _{stat} =	-0,3 hPa
							3- 3		$t_{tr} =$	18 °C
									w =	8,15 m/s
									Verhältnis w _{max} /w _{min}	
									Valumanatu	ômo.
	4								<u>Volumenstr</u> Betrieb =	ome 645 m³/h
-	=	-					· ·		Norm, feucht =	606 m ³ /h
	=	-					*		Norm, trocken =	602 m³/h
- 1	Ý								Troning Godien	mm
					- 1				Sondengröße	
									Absaugerate	2,8 m ³ /h
_									berechnet	11,02 mm
				konstante			-		gewählt	The second secon

Bericht vom 02.10.2024

Anhang Blatt 25 von 39

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 26 von 39

Auftraggeber:

BASF SE

Auftragsnummer:

6367155.40

Anlage:

Kaurefix Fabrik

Messort:

A084

Messkomponente:

Staub

PM-Nr. der Gasuhr:

28790239

Messung-Nr.		1	2	
Datum		24.01.2024	24.01.2024	
Uhrzeit		14:25 - 14:55	15:03 - 15:28	
Barometerstand	[hPa]	1014	1014	
Probenahmevolumen	[m³]	1,411	1,145	
Temperatur an der Uhr	[°C]	16,0	18,0	
Druck an der Uhr	[hPa]	0,0	0,0	
Normvolumen	[m³]	1,334	1,075	
Probenbezeichnung		24-082	24-083	
Bezugssauerstoffgehalt	[Vol-%]	V V		
Sauerstoffgehalt	[Vol-%]	20,9	20,9	
Messunsicherheit Sauerstoff	[Vol-%]			
Statischer Druck im Abgaskanal	[hPa]	-0,3	-0,3	
Abgastemperatur	[°C]	18	18	
Abgasfeuchte	[Vol-%]	0,59	0,59	
Mittlere Abgasgeschwindigkeit	[m/s]	8,15	8,15	
Fläche Messquerschnitt	[m²]	0,022	0,022	
Volumenstrom im Normzustand bezogen auf trockenes Abgas	[m³/h]	602	602	
Durchmesser Düse	[mm]	11	11	
Mittlere Temperatur nach Sonde	[°C]	18,0	18,0	
Mittlere isokinetische Abweichung	[%]	2,6	-17,4	
Dichtigkeitsprüfung durchgeführt		ja	ja	

Ergebnisse

Analysenergebnis	[mg/Probe]	<0,4	<0,4	
relative Standardabweichung		0,168	0,168	
Konzentration im Betriebszustand	[mg/m³]	< 0,3	< 0,4	
Konzentration bezogen auf feuchtes Abgas im Normzustand	[mg/m³]	< 0,3	< 0,4	
Konzentration bezogen auf trockenes Abgas im Normzustand	[mg/m³]	< 0,3	< 0,4	
Konzentration bezogen auf trockenes Abgas im Normzustand und den Bezugssauerstoffgehalt	[mg/m³]			
Messunsicherheit	[mg/m³]	0,051	0,063	
Massenstrom	[kg/h]	< 0,000	< 0,000	

Blindwert

Probenbezeichnung: 24-081

mittl. Normvol. [m³] = 1,205

Analysenergebnis: <0,4 mg

Koriz: < 0,3 mg/m³

Blendenkonstante

Blendenfaktor

Proj	ekt-N	Nr. 636715	55.40	Rev	. A		Beri	cht vom 02	.10.20	024 Anhang	Blatt 27 von 39
Auftr	aggeb	er: BAS	FSE				_				
Auftr	agsnu	mmer: 6367	7155.4	40				4			
Anlag	ge:	Kaui	refix								
Mess		A 01	0								
	bearb		7					*			
Mess			21.02	2.2024	1	Uhrzei	von	10:10 bis	10:20	Me	ssung Nr. 1
Strö	mung	smessgerä	it				Achser	anordnung		Kanalabmes	sungen
	Stau						_	*		a (D)=	710 mm
-	aktor		J				1.		77	b=	mm
X	Anen	nometer					4) b	1 1	A =	0,396 m²
Einte	eilung	Messnetz					X		a	Wandstärke =	mm
Anz	zahl A	chsen 2	1				etersta	nd			beschreibung
An	zahl F	Punkte 2	J			b ₀ =	1012	hPa		Höhe Quelle =	m
										Fläche Quelle =	m²
Achse		Eintauch-	Diffe	erenzo	iruck	Stat.	Tempe-			Lage Kanal =	Tax
1ch	MP	tiefe		[Pa]	1	Druck	ratur	geschw.	MP	Höhe Messst. =	m
_	-	[mm]	MT	M 2	M 3		[°C]	[m/s]	- 60	Einlaufstr. =	9 m
1A	1	104 606				0,00	20,0	10,8	X	Auslaufstr. =	3 m 2 Stk
1A 2A	2	104	-			-			X	Maß Messöff. =	30 mm
2A	2	606							X	Mais Messon	Juliur
ZA		000				-	-		Α.	<u>Feuchte</u>	
										2-Thermome	termethode
			1000						5	Temperatur trocken =	20 °C
										Temperatur feucht =	15,1 °C
										(Manager and research of the	
	-					-	9			relative Feuchte =	60,69 %
									5 = 1	absolute Feuchte =	0,01 kg/m³ i.N.tr.
										Feuchte =	1,41 Vol. %
			94								242.7 (4)45.7 (4)
								-			
- 4						-	E 3	-	-	Dichte	
										O ₂ =	20,9 Vol-%
								*		CO ₂ =	0,04 Vol-%
			4.1							Rest =	79,06 %
			Table 1							Dichte Betrieb =	1,19186 kg/m ³
										<u>Mittelwerte</u>	
										p _{stat} =	0 hPa
			177		2				h E	t _{tr} =	20 °C
									LEI	w =	10,8 m/s
									E	Verhältnis w _{max} /w _{min}	
										Volumenstr	<u>öme</u>
			12.0				-	1	1 = 1	Betrieb =	15396 m³/h
									-	Norm, feucht =	14331 m³/h
			3.74					2-2-1	7 = 1	Norm, trocken =	14129 m³/h
				1						The second of th	

Sondengröße Absaugerate

berechnet

gewählt

 $\frac{T_{Bl}[K] \cdot d_{Duse}^4[cm] \cdot w^2 \left[\frac{m}{s}\right]}{P_{Blabs}[hPa]}$

2,8

9,58

m³/h

mm

mm

Bericht vom 02.10.2024

Anhang Blatt 28 von 39

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF SE

Berichtsnummer: 6367155.40

Anlage: Kaurefix
Messort: A 010

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-024

Messung-Nr.		1	2	3		
Datum		21.03.24	21.03.24	21.03.24		
Uhrzeit		10:20 - 10:50	11:00 - 11:30	11:40 - 12:10		
Barometerstand	[hPa]	1012	1012	1012		
Feuchte Abgas	[Vol-%]	1,41	1,41	1,41		
Abgasreinigung vorhanden		Ja	Ja	Ja		
Volumenstrom im Normzustand	[m³/h]	14.129	14.129	14.129		

Ergebnisse

Messwert	[mg/m³]	2,9	1,3	0,9	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	3,8	3,1	3,7	
Massenstrom	[kg/h]	0,053	0,044	0,052	
Gesamtmessunsicherheit	[mg/m³N,tr]	1,10	1,10	1,10	

¹⁾ O2 Bezugsrechnung erfolgt nicht wenn O2ist < O2Bezug

Bewertung der Drit	Werte wurden korrigiert		
Drift max. abs. [%]			2,25
Messende	Endpunkt	12:19	146,99
Ablesewert nach	Nullpunkt	21.03.24	-3,38
Messbeginn	Endpunkt	10:00	147,15
Einstellwert vor	Nullpunkt	21.03.24	0,00

Eingesetztes Prüfgas Propan berechnet als Cges.							
Prüfgaskor	nzentration	Flaschen-	Haltbar				
Sollwert	Einheit	nummer	bis				
147,154	mg/m³	M905983	02 / 2025				

Analysenwert

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

Auftraggeber: BASF SE

Auftragsnummer: 6367155.40

Anlage: Kaurefix

Messort: A 010

Messkomponente: Formaldehyd

Bearbeiter:

PM-Nr. der Gasuhr: 541-21-016

PM-Nr. der Gasuhr:	541-21-016		*				
Messung-Nr.		1	2	3	1		
Datum		21.03.2024	21.03.2024	21.03.2024			
Uhrzeit		10:20 - 10:50	10:57 - 11:27	11:33 - 12:03			
Barometerstand	[hPa]	1.012	1.012	1.012			
Zählerstand Anfang	[m³]	8,1365	8,1923	8,2477			
Zählerstand Ende	[m³]	8,1921	8,2474	8,3041			
Abgesaugtes Volumen	[m³]	0,056	0,055	0,056			
Temperatur an der Uhr	[°C]	27	31	31			
Sondentemperatur	[°C]	60	60	60		1	
Korrekturfaktor Gasuhr		1,000	1,000	1,000			
Probenbezeichnung		A010-HCHO-1	A010-HCHO-2	A010-HCHO-3			
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja			
Normvolumen	[m³]	0,051	0,049	0,050			
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90			
Bezugssauerstoffgehalt	[Vol-%]	7.0	-	- p-			
Volumenstrom im Normzustand	[m³/h]	14.129	14.129	14.129			
Analysenergebnis	[mg/Probe]	0,024	0,011	0,012			
Konzentration	[mg/m³]	0,471	0,224	0,240			
Konzentration O ₂ -Bez.	[mg/m³]	2		÷			
Massenstrom	[kg/h]	0,0067	0,0032	0,0034			
Gesamtmessunsicherheit	[mg/m³]	0,05	0,02	0,02			
Blindwert							
Probenbezeichnung	А	.010-HCHO-B\		- 52			
mittleres Normvolumen	[m³]	0,050	1-2	4			
Analysenwert	[mg]	< 0,001					
							-

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

< 0,020

[mg/m³]

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

Auftraggeber: BASF SE

Auftragsnummer: 6367155.40

Anlage: Kaurefix

Messort: A 010

Messkomponente: Methanol

Bearbeiter:

PM-Nr. der Gasuhr: 541-21-018

Messung-Nr.		1	2	3		
Datum		21.03.2024	21.03.2024	21.03.2024		
Uhrzeit		10:20 - 10:50	10:57 - 11:27	11:33 - 12:03	ii -	
Barometerstand	[hPa]	1.012	1.012	1.012		
Zählerstand Anfang	[m³]	9,7630	9,7979	9,8304	Tree -	
Zählerstand Ende	[m³]	9,7977	9,8301	9,8630		
Abgesaugtes Volumen	[m³]	0,035	0,032	0,033		
Temperatur an der Uhr	[°C]	22	23	23		
Sondentemperatur	[°C]	60	60	60		
Korrekturfaktor Gasuhr		1,000	1,000	1,000		
Probenbezeichnung		A010-Metha-1	A010-Metha-2	A010-Metha-3		
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja		
Normvolumen	[m³]	0,032	0,029	0,030	1	
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]	8	-	-		
Volumenstrom im Normzustand	[m³/h]	14.129	14.129	14.129		
Analysenergebnis	[mg/Probe]	0,180	0,029	0,033		1
Konzentration	[mg/m³]	5,625	1,000	1,100	11	
Konzentration O ₂ -Bez.	[mg/m³]	3.1	8			
Massenstrom	[kg/h]	0,0795	0,0141	0,0155		
Gesamtmessunsicherheit	[mg/m³]	0,55	0,10	0,11		

Blindwert

Probenbezeichnung	1	A010-Metha-BV	8	н		
mittleres Normvolumen	[m³]	0,030		- A		
Analysenwert	[mg]	< 0,005		- 6		
Analysenwert	[mg/m³]	< 0,165	-	P		

Projekt-Nr. 6367155.40 Rev. A

	aggel		F SE							
		ımmer: 6367		10						
Anla	- A	Kau		1-21						
Mess		-	1 - A0	17						
Sach	beart	eiter:								
Mess	stag:		21.03	.2024	Uhrzeit	t von	10:15 bis	10:20	Me	ssung Nr. 1
		smessgerä	it			Achsen	anordnung		Kanalabmes	The state of the s
	Stau		ST. 1			-			a (D)=	620 mm
	aktor	11000	Nr.			(-		777	b=	mm
	Anen	nometer				4) b		A =	0,302 m ²
		Messnetz				X		а	Wandstärke =]mm
		chsen 2				eterstar				beschreibung
An	zahi F	Punkte 2			b ₀ =	1012	hPa		Höhe Quelle =	m
									Fläche Quelle =	m²
se	2,2	Eintauch-	Diffe	renzdruck	Stat.	Tempe-		00.50	Lage Kanal =	T.
Achse	MP	tiefe		[Pa]	Druck	ratur	geschw.	MP	Höhe Messst. =	m
		[mm]		M2 M3		[°C]	[m/s]		Einlaufstr. =	m
1A	1	91	70		-9,00	21,0	10,91	X	Auslaufstr. =	m
1A	2	529	100				13,04	X	Zahl Messöff. =	Stk
2A	1	91	55				9,67	X	Maß Messöff. =	mm
2A	2	529	33				7,49	Х	_	
						-			<u>Feuchte</u>	
									2-Thermome	termethode
									Temperatur trocken =	21 °C
									Temperatur feucht =	16,3 °C
	H		EW							-
								i 1	relative Feuchte =	63,17 %
									absolute Feuchte =	0,01 kg/m3 i.N.tr.
							-		Feuchte =	1,57 Vol. %
									1,350,000	1100 100
	+				-			-	Dichte	
									O ₂ =	20,9 Vol-%
		3					X - X		CO ₂ =	0,04 Vol-%
					-				Rest =	79,06 %
			-			()			Dichte Betrieb =	1,17653 kg/m ³
									Dictile Betrieb -	1,17655 kg/III
									Mittelwerte	
								E	p _{stat} =	-9 hPa
	ji III								t _{tr} =	21 °C
	7-3								w =	10,28 m/s
									Verhältnis w _{max} /w _{min}	1,7 / 1
							-		Volumerate	ůmo.
	4								<u>Volumenstro</u> Betrieb =	
								4		11176 m³/h
-									Norm, feucht =	10275 m³/h
									Norm, trocken =	10114 m³/h
	1 ==								Service Services	
	1				-	L I		, III II4	<u>Sondengröße</u>	5.4
								-	Absaugerate	2,8 m³/h
									berechnet	8,71 mm
		Ble	enden	konstante	5		La constant		gewählt	mm
							T _{B1} [K] · d ⁴ Düse lem		_	
			Blen	denfaktor			PElabs [hP	'a]		

Bericht vom 02.10.2024

Anhang Blatt 31 von 39

Bericht vom 02.10.2024

Anhang Blatt 32 von 39

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF SE

Berichtsnummer: 6367155.40

 Anlage:
 Kaurefix

 Messort:
 S421 - A017

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-022

Messung-Nr.		1	2	3		
Datum		21.03.24	21.03.24	21.03.24		
Uhrzeit		10:42 - 11:12	11:30 - 12:00	12:00 - 12:30		
Barometerstand	[hPa]	1011	1011	1011		
Feuchte Abgas	[Vol-%]	1,57	1,57	1,57		
Abgasreinigung vorhanden		Ja	Ja	Ja		
Volumenstrom im Normzustand	[m³/h]	10.114	10.114	10.114		

Ergebnisse

Messwert	[mg/m³]	5,0	0,8	0,3	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	4,9	0,7	0,3	
Massenstrom	[kg/h]	0,050	0,008	0,003	
Gesamtmessunsicherheit	[mg/m³N,tr]	1,48	1,48	1,48	

¹⁾ O2 Bezugsrechnung erfolgt nicht wenn O2ist < O2Bezug

Bewertung der Drif	t		Werte wurden korrigiert
Drift max. abs. [%]			4,92
Messende	Endpunkt	12:40	154,40
Ablesewert nach	Nullpunkt	21.03.24	0,00
Messbeginn	Endpunkt	09:44	147,15
Einstellwert vor	Nullpunkt	21.03.24	0,00

		tes Prüfgas chnet als Cges.	
Prüfgaskor		Flaschen-	Haltbar
Sollwert	Einheit	nummer	bis
147,154	mg/m³	M905983	02 / 2025

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 33 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

BASF SE Auftraggeber: 6367155.40 Auftragsnummer: Kaurefix Anlage: S421 - A017 Messort: Formaldehyd Messkomponente: Bearbeiter:

PM-Nr. der Gasuhr:	541-21-019					
Messung-Nr.		1	.2	3		
Datum		21.03.2024	21.03.2024	21.03.2024		
Uhrzeit		10:42 - 11:12	11:22 - 11:52	12:02 - 12:32		
Barometerstand	[hPa]	1.012	1.012	1.012		
Zählerstand Anfang	[m³]	3,3618	3,4378	3,5236		
Zählerstand Ende	[m³]	3,4377	3,5234	3,6080		
Abgesaugtes Volumen	[m³]	0,076	0,086	0,084		
Temperatur an der Uhr	[°C]	26	2:8	29	1	
Sondentemperatur	[°C]	40	40	40		
Korrekturfaktor Gasuhr		1,000	1,000	1,000		
Probenbezeichnung		A017-HCHO-1	A017-HCHO-2	A017-HCHO-3		
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja		
Normvolumen	[m³]	0,069	0,078	0,076		
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]	¥ /	5-2	-		
Volumenstrom im Normzustand	[m³/h]	10.114	10.114	10.114		
Analysenergebnis	[mg/Probe]	0,081	0,039	0,040		
Konzentration	[mg/m³]	1,174	0,500	0,526		
Konzentration O ₂ -Bez.	[mg/m³]	+	-			
Massenstrom	[kg/h]	0,0119	0,0051	0,0053		
Gesamtmessunsicherheit	[mg/m³]	0,11	0,05	0,05		
Blindwert						
Probenbezeichnung	A	.017-HCHO-B\				
mittleres Normvolumen	[m³]	0,074				
Analysenwert	[mg]	< 0,002	-			
	-	-1-1-1			+	

Probenbezeichnung	A017-HCHO-BV				
mittleres Normvolumen	[m³]	0,074			
Analysenwert	[mg]	< 0,002	-		
Analysenwert	[mg/m³]	< 0,027			

Projekt-Nr. 6367155.40 Rev. A

Bericht vom 02.10.2024

Anhang Blatt 34 von 39

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

Auftraggeber: BASF SE

Auftragsnummer: 6367155.40

Anlage: Kaurefix

Messort: S421 - A017

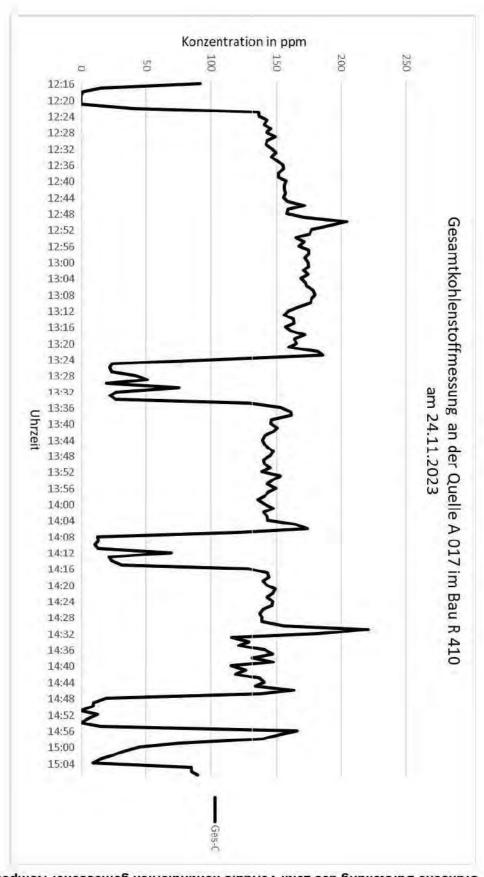
Messkomponente: Methanol

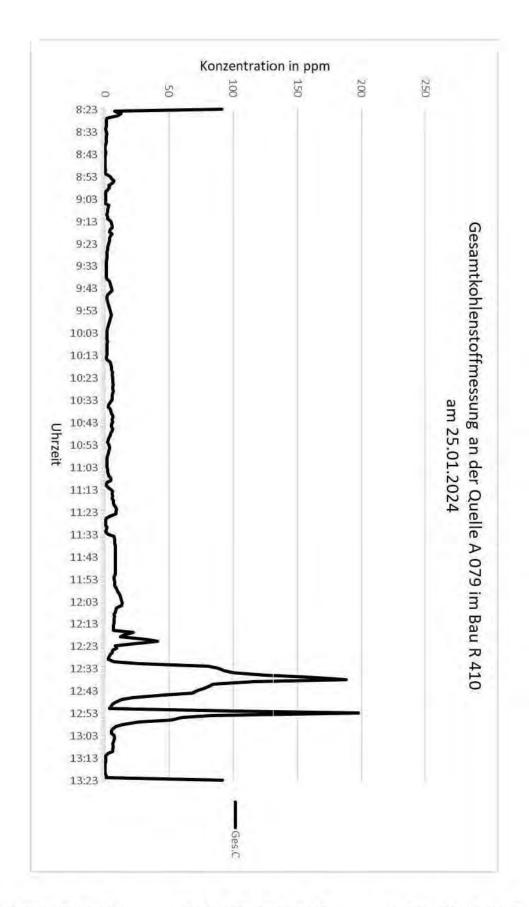
Bearbeiter:

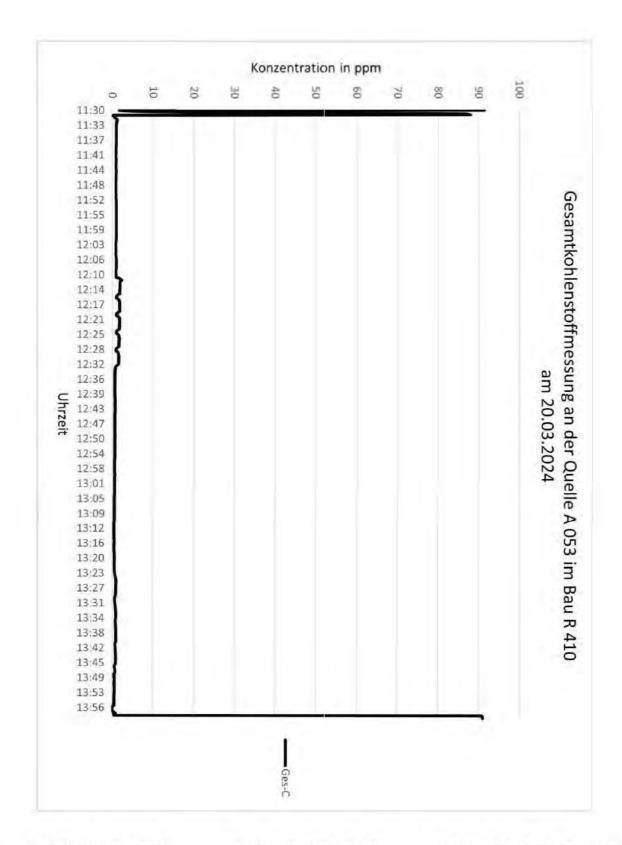
PM-Nr. der Gasuhr: 541-21-014

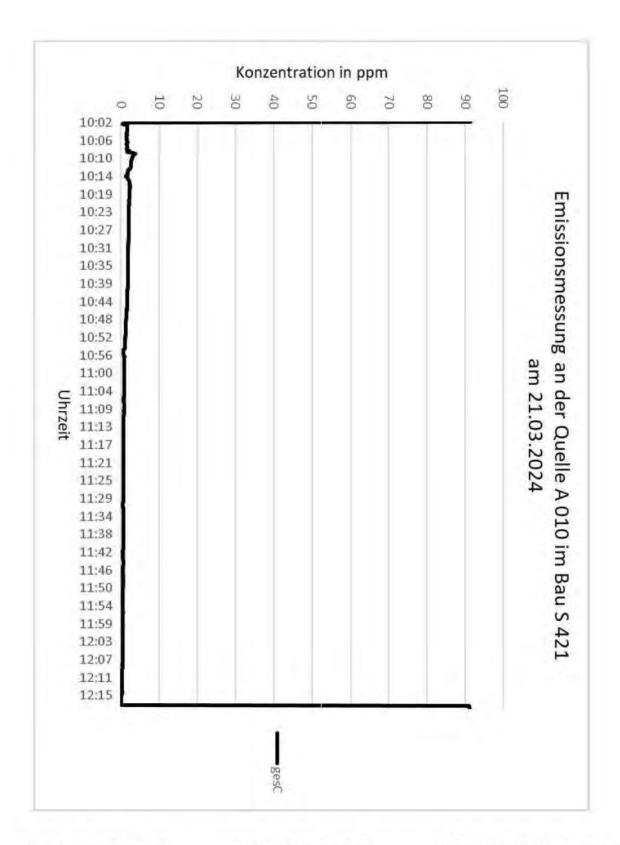
Messung-Nr.		1	2.	3		
Datum		21.03.2024	21.03.2024	21.03.2024		
Uhrzeit		10:42 - 11:12	11:22 - 11:52	12:02 - 12:32		
Barometerstand	[hPa]	1.012	1.012	1.012		
Zählerstand Anfang	[m³]	2,7904	2,8242	2,8556		
Zählerstand Ende	[m³]	2,8241	2,8554	2,8862		
Abgesaugtes Volumen	[m³]	0,034	0,031	0,031		
Temperatur an der Uhr	[°C]	35	39	39		
Sondentemperatur	[°C]	40	40	40		
Korrekturfaktor Gasuhr		1,000	1,000	1,000		
Probenbezeichnung		A017-METH-1	A017-METH-2	A017-METH-3		
Dichtigkeitsprüfung durchç	geführt	ja	ja	ja		
Normvolumen	[m³]	0,030	0,027	0,027		
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]			- I		
Volumenstrom im Normzustand	[m³/h]	10.114	10.114	10.114		
Analysenergebnis	[mg/Probe]	0,680	0,054	0,047		
The state of the s						

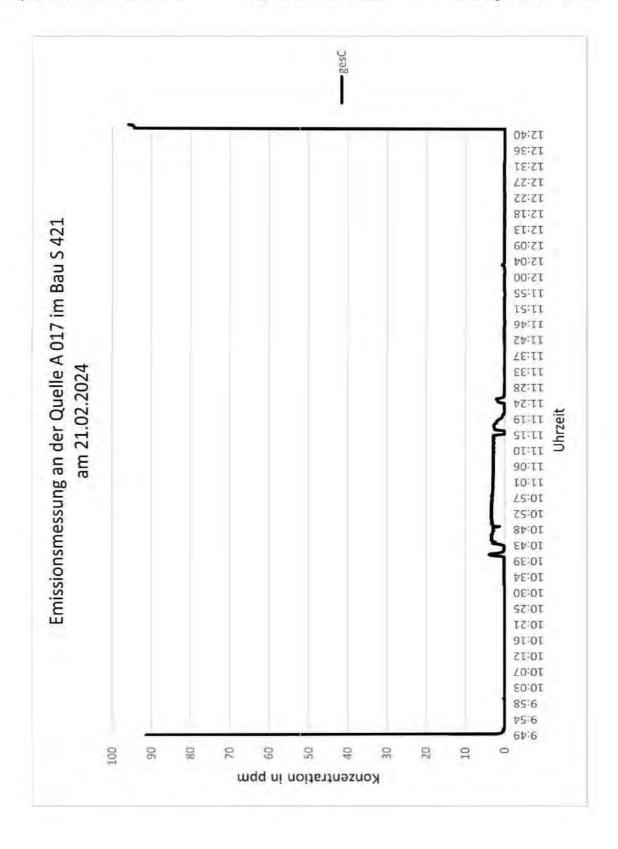
Analysenergebnis	[mg/Probe]	0,680	0,054	0,047		
Konzentration	[mg/m³]	22,667	2,000	1,741		
Konzentration O ₂ -Bez.	[mg/m³]	- 4	9	-		
Massenstrom	[kg/h]	0,2293	0,0202	0,0176		
Gesamtmessunsicherheit	[mg/m³]	2,20	0,19	0,17		


Blindwert


Probenbezeichnung		A017-METH-BV		5		
mittleres Normvolumen	[m³]	0,028				
Analysenwert	[mg]	< 0,005	4			
Analysenwert	[mg/m³]	< 0,179	4	l le		


Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)


2.7


Grafische Darstellung des zeitl. Verlaufs kontinuierlich gemessener Komponenten

Bericht über die Durchführung von Emissionsmessungen

Betreiber: BASF SE

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Anlage: Butindiolfabrik (Anlage Nr.07.01)

Standort der Anlage: BASF SE

Bau D 608 und Bau E 605 Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Art der Messung: Wiederkehrende Emissionsmessung gemäß

§ 28 BlmSchG an genehmigungsbedürftigen

Anlagen

Aufgabenstellung: Emissionsmessungen in der Abluft der

Emissionsquellen: A 010 und B 089

Ausführendes Messinstitut: SGS-TÜV Saar GmbH

bekannt gegebene Messstelle nach

§ 29b BlmSchG

DAkkS Akkreditierung als Prüflabor Modul

Immissionsschutz D-PL-12088-02

Schwanheimer Ufer 302

60529 Frankfurt

Messkomponenten: Abgasrandbedingungen, Gesamtkohlenstoff,

Formaldehyd, Propargylalkohol, Methanol,

2-Butin-1,4-diol

Projekt-Nr.: 6367155.10

Auftrag Nr.: 1086869209 vom 12.10.2022

Datum der Messung: 16.07.2024

Berichtsdatum: 18.12.2024

Berichtsumfang: 40 Seiten (davon 16 Seiten Anhang)

Revision: A

S6S-TUV Sear GmbH | Am TÜV 1 D-66280 Sulzbach t+49 6897 506 - 60 f+49 6897 506 - 102 www.sgs-tuev-sear.com

Member of the SGS Group

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 2 von 24

Zusammenfassung

Betreiber: BASF SE

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Standort der Anlage: BASF SE

Butindiolfabrik (Anlage Nr.07.01)

Bau D 608 (A 010) und Bau E 605 (B 089)

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Anlage: Genehmigungsbedürftige Anlage gemäß § 4 BlmSchG in

Verbindung mit Ziffer 4.2.1 G/E des Anhangs 1 zur 4. BImSchV

Datum der Messung: 16.07.2024

Messergebnisse

Massenkonzentration

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 010	Gesamtkohlenstoff	mg/m³	1620,1	1586	1655	50	Ja
A 010	Formaldehyd	mg/m³	368,0	332	404	5	Ja
A 010	org. Stoffe der Klasse I	mg/m³	2855,8	2594	3118	20	Ja

Organische Stoffe der Klasse I (hier: Methanol und Propargylalkohol)

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maxımaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
B 089	Gesamtkohlenstoff	mg/m³	3381,5	3312	3451	50	Ja
B 089	Formaldehyd	mg/m³	0,6	1	1	5	Ja
B 089	Org. Stoffe der Klasse I	mg/m³	85,8	78	94	20	Ja

Organische Stoffe der Klasse I (hier: Methanol, Propargylalkohol und 2-Butin-1,4-diol.)

Berichtsdatum: 18.12.2024 Seite 3 von 24

Massenströme

Emissions- quelle	Messkomponente	Einheit	maximaler Massenstrom	Maximaler Massenstrom abzüglich Messunsicherheit	Maximaler Massenstrom zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 010	Gesamtkohlenstoff	kg/h	0,003	0,003	0,003	0,50	Ja
A 010	Formaldehyd	g/h	0,70	0,6	0,8	12,5	Ja
A 010	org. Stoffe der Klasse I	kg/h	0,005	0,004	0,01	0,10	Ja

Organische Stoffe der Klasse I (hier: Methanol und Propargylalkohol)

Der Abgasvolumenstrom lag unterhalb der Nachweisgrenze des Messverfahrens. Laut Betreiberangaben ist der maximale Volumenstrom <2 m³/h. Zur Berechnung der Massenströme wurde ein Abgasvolumenstrom von 2 m³/h angenommen.

Emissions- quelle	Messkomponente	Einheit	maximaler Massenstrom	Maximaler Massenstrom abzüglich Messunsicherheit	Maximaler Massenstrom zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
B 089	Gesamtkohlenstoff	kg/h	0,037	0,04	0,04	0,50	Ja
B 089	Formaldehyd	g/h	<0,10	<0,1	<0,1	12,5	Ja
B 089	Org. Stoffe der Klasse I	kg/h	0,003	0,003	0,003	0,10	Ja

Organische Stoffe der Klasse I (hier: Methanol, Propargylalkohol und 2-Butin-1,4-diol.)

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K).

Für den Anlagenmassenstrom wurden die maximalen Massenströme der beiden Quellen addiert:

Emissions- quelle	Messkomponente	Einheit	maximaler Massenstrom	Maximaler Massenstrom abzüglich Messunsicherheit	Maximaler Massenstrom zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
Gesamtanl.	Gesamtkohlenstoff	kg/h	0,040	0,04	0,04	0,50	Ja
Gesamtanl.	Formaldehyd	g/h	<0,80	<0,6	<0,8	12,5	Ja
(-psamtani	org. Stoffe der Klasse I, als Gesamtkohlenstoff	kg/h	0,008	0,007	0,010	0,10	Ja

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024

Seite 4 von 24

Inhalts	sverzeichnis	Seite
1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10	Messaufgabe Auftraggeber Betreiber Standort Anlage Datum der Messung Anlass der Messung Aufgabenstellung Messkomponenten und Messgrößen Ortsbesichtigung vor Messdurchführung Messplanabstimmung	5 5 5 5 5 5 5 5 6 6 6 7
1.11 1.12 1.13	An der Messung beteiligte Personen Beteiligung weiterer Institute Stellv. fachlich Verantwortlicher	7 7 7
2. 2.1 2.2 2.3 2.4 2.5 2.6	Beschreibung der Anlage und der gehandhabten Stoffe Bezeichnung der Anlage Beschreibung der Anlage Beschreibung der Emissionsquellen nach Betreiberangaben Angabe der laut Genehmigungsbescheid mögliche Einsatzstoffe Betriebszeiten nach Betreiberangaben Einrichtung zur Erfassung und Minderung der Emissionen	8 8 8 8 8 8
3. 3.1 3.2	Beschreibung der Probenahmestelle Messstrecke und Messquerschnitt Lage der Messpunkte im Messquerschnitt	10 10 11
4.1 4.2 4.3 4.4 4.5 4.6	Mess- und Analysenverfahren Abgasrandbedingungen Automatische Messverfahren Manuelle Messverfahren für gas- und dampfförmige Emissionen Messverfahren für partikelförmige Emissionen Besondere hochtoxische Abgasinhaltsstoffe Geruchsemissionen	13 13 15 17 20 20 20
5. 5.1 5.2	Betriebszustand der Anlage während der Messungen Produktionsanlage Abgasreinigungsanlage	21 21 21
6. 6.1 6.2 6.3 6.4	Zusammenstellung der Messergebnisse und Diskussion Beurteilung der Betriebsbedingungen während der Messungen Messergebnisse Messunsicherheiten Diskussion der Ergebnisse	22 22 22 24 24
7. 7.1 7.2	Anhang Mess- und Rechenwerte Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten	1 1 15

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 5 von 24

Messaufgabe

1.1 Auftraggeber

BASF SE Carl Bosch-Straße 38 67056 Ludwigshafen am Rhein

1.2 Betreiber

Entsprechend 1.1

Ansprechpartner:

Telefon: Mobil: E-Mail:

1.3 Standort

BASF SE Butindiolfabrik (Anlage Nr.07.01) Bau D 608 (A 010) und Bau E 605 (B 089) Carl Bosch-Straße 38 67056 Ludwigshafen am Rhein

1.4 Anlage

Genehmigungsbedürftige Anlage gemäß § 4 BlmSchG in Verbindung mit Ziffer 4.1.2 G/E des Anhangs 1 zur 4. BlmSchV

Hier: Anlagen zur Herstellung von Stoffen oder Stoffgruppen durch chemische Umwandlung in industriellem Umfang. Anlage zur Herstellung von sauerstoffhaltigen Kohlenwasserstoffen wie Alkohole, Aldehyde, Ketone, Carbonsäuren, Ester, Acetate, Ether, Peroxide, Epoxide.

1.5 Datum der Messung

Datum der Messung: 16.07.2024

Datum der letzten Messung: 24.08.2021, 07.-13.09.2021

Datum der nächsten Messung: 2027

1.6 Anlass der Messung

Wiederkehrende Messung nach § 28 BlmSchG bei genehmigungsbedürftigen Anlagen nach Auflagen des immissionsschutzrechtlichen Genehmigungsbescheides:

- vom 23.12.2020 (Stadt Ludwigshafen am Rhein, Aktenzeichen 4-151F.Bl)
- vom 11.03.2024 (Struktur- und Genehmigungsdirektion Süd, Aktenzeichen 23/05/5.1/2024/0053/JS).

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 6 von 24

1.7 Aufgabenstellung

Messkomponente	Massenstrom	Massenkonzentration
Organische Stoffe, als Gesamtkohlenstoff*)	0,5 kg/h	50 mg/m ³
Organische Stoffe der Klasse I, als Gesamtkohlenstoff**)	0,10 kg/h	20 mg/m ³
Formaldehyd (HCHO) ***)	12,5 g/h	5 mg/m ³

- *) Die im Abgas enthaltenen Emissionen an organischen Stoffen, ausgenommen staubförmige organische Stoffe, dürfen insgesamt den oben angegebenen Massenstrom oder die oben angegebene Massenkonzentration, jeweils angegeben als Gesamtkohlenstoff, im Normalbetrieb nicht überschreiten.
- **) Innerhalb des Massenstroms oder der Massenkonzentration für Gesamtkohlenstoff dürfen die nach Klasse I eingeteilten organischen Stoffe, auch bei Vorhandensein mehrerer Stoffe derselben Klasse, insgesamt den oben genannt Massenstrom oder die oben genannte Massenkonzentration, im Normalbetrieb nicht überschreiten
- ***) Die im Abgas enthaltenen Emissionen an Formaldehyd dürfen insgesamt den oben angegebenen Massenstrom oder die oben angegebene Massenkonzentration im Normalbetrieb nicht überschreiten.

Die Angaben beziehen sich auf ein trockenes Abgas im Normzustand (273 K, 1013 hPa).

1.8 Messkomponenten und Messgrößen

	Messkomponenten	Anzahl x Dauer, Art einer Einzelmessung
	Abgasrandbedingungen	begleitend über den Messzeitraum
	Gesamtkohlenstoff	4 x 0,5 h, Kontinuierlich
A 010, B 089	Formaldehyd	4 x 0,5 h, diskontinuierlich
	Methanol	4 x 0,5 h, diskontinuierlich
	Propargylalkohol*	4 x 0,5 h, diskontinuierlich
	2-Butin-1,4-diol* (nur B 089)	4 x 0,5 h, diskontinuierlich

1.9 Ortsbesichtigung vor Messdurchführung

	rtsbesichtigung durchgeführt am
	zusätzlich wurde eine ausführliche Anlagenbeschreibung durch den Auftraggeber zur Verfügung gestellt. Der Bericht der vorhergehenden Messungen liegt vor.
⊠ k	eine Ortsbesichtigung durchgeführt
	⊠ mit vorherigen Messungen an dieser Anlage befasst, Örtlichkeiten sind bekannt
	zusätzlich wurde eine ausführliche Anlagenbeschreibung durch den Auftraggeber zur Verfügung gestellt. Der Bericht der vorhergehenden Messungen liegt vor

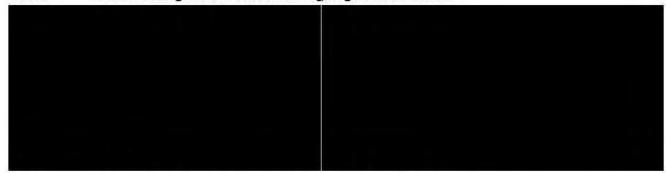
Berichtsdatum: 18.12.2024

Seite 7 von 24

1.10	Messplanabstimmung	
	nführung der Messungen wurde mit Hr. werde und vom Betreiber abgestimmt. Die chen Angaben wurden dem Landesamt für Umwelt Rheinland-Pfalz per E-Mail mitget	
1.11	An der Messung beteiligte Personen	
#		
1.12	Beteiligung weiterer Institute	
Entfällt		
1.13	Stellv. fachlich Verantwortlicher	

Berichtsdatum: 18.12.2024

Seite 8 von 24


2. Beschreibung der Anlage und der gehandhabten Stoffe

2.1 Bezeichnung der Anlage

Entsprechend 1.4

2.2 Beschreibung der Anlage

2.2.1 Beschreibung der Produktionsanlagen gemäß Betreiber

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Emissionsquelle	Höhe über Grund	Austrittsflasche	UTM-Koordinaten	Bauausführung
A 010	14 m	0,0078 m ²	32458626 / 5484145	Stahlblech
B 089	20 m	0,0078 m ²	32458516 / 5484123	Edelstahl

2.4 Angabe der laut Genehmigungsbescheid mögliche Einsatzstoffe

2.5 Betriebszeiten nach Betreiberangaben

Die Emissionszeit entspricht der Betriebszeit abzüglich Wartungs-, Reparatur- und Stillstandszeiten.

2.6 Einrichtung zur Erfassung und Minderung der Emissionen

2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Art der Emissionserfassung

Behälteratmung

2.6.1.2 Ventilatorkenndaten

Kein Ventilator verbaut (Beatmung)

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 9 von 24

2.6.2 Einrichtung zur Verminderung der Emissionen

Emissionsquelle	B 089
Anlage	Waschkolone
BASF-interne Bezeichnung	K71
Hersteller	- 3
Baujahr	1990
Art der Waschflüssigkeit	Wasser
Arbeitsprinzip	k.A.
Waschflüssigkeitsführung	Kreismenge + Frischwasser
Wäscheraufbau	Frischwasser auf Packung oben DN100x1500mm, Kreiswasser auf Packung unten DN200x2500mm
Höhe der Füllkörper	insg. ca. 4000mm
Art der Füllkörper	35er Pallringe
Temperatur der Waschflüssigkeit im Vorlagebehälter	ca. 30°C
Letzte Erneuerung der Waschflüssigkeit im Absetzbecken	Nicht vorhanden, kontinuierlicher Austausch
Bauart des nachgeschalteten Tropfenabscheiders	Nicht vorhanden
Wartungsintervall	10 - jährig
Letzte Wartung	2018

2.6.3 Einrichtung zur Verdünnung des Abgases

Nicht zutreffend

Berichtsdatum: 18.12.2024 Seite 10 von 24

3. Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Emissionsquelle	Lage Abgaskanal	Höhe der Probenahmestelle
A 010	Senkrecht	16 m
B 089	Senkrecht	ca. 20 m

Emissionsquelle	Kanalabmessung	Fläche Querschnitt	Einlaufstrecke	Auslaufstrecke
A 010	0,17 m	0,0227 m ²	≥ 5 dh	≥ 2 dh
B 089	0,10 m	0,0079 m ²	≥ 5 dh	≥ 2 dh

Empfehlungen nach DIN EN 15259

Emissionsquelle	Einlaufstrecke ≥ 5 dh	Auslaufstrecke ≥ 2 dh	Abstand bis zur Mündung ≥ 5 dh
A 010	ja	ja	ja
B 089	ja	ja	ja

3.1.2 Arbeitsfläche und Messbühne

Emissionsquelle	Probenahmestelle	Arbeitsplatz	Traversierfläche	Wetterschutz
A 010	im freien	im freien	ausreichend	nicht vorhanden
B 089	im freien	im freien	ausreichend	nicht vorhanden

Emissionsquelle	Arbeitsbühne	Zugang zur Probenahmestelle	Energie- versorgung	Wasser
A 010	vorhanden	Treppen	230 V	nicht relevant
B 089	vorhanden	Treppen	230 V	nicht relevant

3.1.3 Messöffnungen

Emissionsquelle	Anzahl, Größe der Messöffnung	Gewinde	Anordnung
A 010	2 x 2"	Innen	Um 90° versetzt
B 089	2 x 2"	Innen	Um 90° versetzt

Berichtsdatum: 18.12.2024

Seite 11 von 24

3.1.4 Strömungsbedingungen im Messquerschnitt

Aufgrund der Messung an der Mündung, kein belastbares Ergebnis ermittelbar.

Emissionsquelle	Winkel Gasstrom zu Mittelachse	lokale negative Strömung	Mindest- geschwindigkeit vorhanden	Verhältnis max. zu min. Geschwindigkeit
A 010	< 15°	keine	erfüllt	nicht relevant
B 089	< 15°	keine	erfüllt	nicht relevant

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

An beiden Emissionsquellen, wurden die Messbedingungen nach DIN EN 15259 erfüllt.

Da die Messstellen (keine Messöffnungen, Messung an der Mündung) nicht den Anforderungen der DIN EN 15259 entsprechen, ist ein nicht quantifizierbarer Beitrag zur angegebenen Messunsicherheit zu addieren.

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

Die Lage der Messpunkte im Messquerschnitt entspricht der DIN EN 15259.

3.2.2 Homogenitätsprüfung

Homogenitätsprüfung:
☐ durchgeführt (siehe Ergebnisse in Nr. 6)
☑ nicht durchgeführt, weil:
☑ Fläche Messquerschnitt < 0,1 m²
☐ Netzmessung
☐ liegt vor
Datum der Homogenitätsprüfung:
Berichts-Nr.:
Prüfinstitut:
Ergebnis der Homogenitätsprüfung:
☐ Messung an einem beliebigen Punkt
☐ Messung an einem repräsentativen Punkt
Beschreibung der Lage des repräsentativen Punkts:
☐ Netzmessung

Berichtsdatum: 18.12.2024

3.2.3 Komponentenspezifische Darstellung

Emissionsquelle: A 010

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt	
Strömungs- geschwindigkeit	1	1				
Abgastemperatur	1	1				
Formaldehyd, Methanol, Ges.C, Propargylalkohol	1	1				

Emissionsquelle: B 089

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt	
Strömungs- geschwindigkeit	1	1				
Abgastemperatur	1	1				
Formaldehyd, Methanol, 2- Butin1,4-diol, Ges.C, Propargylalkohol	1	1	Ö			

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 13 von 24

4. Mess- und Analysenverfahren

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Messverfahren: DIN EN ISO 16911-1 Anemometer (Flügelradanemometer)

Hersteller: Höntzsch Typ: HFA-EX

Messbereich:0,7 bis + 40 m/sLetzte Überprüfung / Kalibrierung:02/2024 / jährlichKontinuierliche Ermittlung:⋈ ja □ nein

Messverfahren: DIN EN ISO 16911-1 Anemometer (Flügelradanemometer)

Hersteller: Ahlborn
Typ: Micro H240
Messbereich: 0,7 bis + 40 m/s
Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich
Kontinuierliche Ermittlung: ⊠ ja □ nein

4.1.2 Statischer Druck im Abgaskanal

Messverfahren: in Anlehnung an DIN EN ISO 16911-1

Mikromanometer unter Berücksichtigung der

entsprechenden Anschlüsse

Hersteller: Airflow Typ: PVM 620

Messbereich:

Letzte Überprüfung / Kalibrierung:

Kontinuierliche Ermittlung:

- 3735 bis + 3735 Pa
02/2024 / jährlich
□ ja ☑ nein

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messverfahren: Digital-Barometer

Hersteller: Airflow Lufttechnik GmbH

Typ: DB2

Messbereich:+ 700 bis + 1100 hPaLetzte Überprüfung / Kalibrierung:02/2024 / ½ jährlichKontinuierliche Ermittlung:□ ja ⋈ nein

4.1.4 Abgastemperatur

Messverfahren: NiCr/Ni-Thermoelement mit elektronischer

Nullpunktkompensation

Hersteller: Fa. Ahlborn

Typ: ALME:MO 2690-8A

Messbereich: - 200 bis + 1100°C

Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich

Kontinuierliche Ermittlung: ⊠ ja □ nein

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messverfahren: Psychrometrische Feuchtemessung

Zwei-Thermometermethode

Seite 14 von 24

Hersteller: Fa. Ahlborn

Typ: Ni-Cr-Ni Thermoelemente (Typ K)

Messbereich: 0 bis 100 % rel. Feuchte

Einsatzbereich: 0 bis + 100 °C
Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich
Kontinuierliche Ermittlung: ⊠ ja □ nein

4.1.6 Abgasdichte

Berechnet unter Berücksichtigung der Abgastemperaturen und der Druckverhältnisse sowie der Abgasbestandteile an Sauerstoff (O₂), Kohlendioxid (CO₂), Rest als Stickstoff (N₂) und der Abgasfeuchte (Wasserdampfanteil im Abgas)

4.1.7 Abgasverdünnung

Entfällt

4.1.8 Volumenstrom

Ermittlungsmethode: Berechnet aus mittlerer Strömungsgeschwindigkeit

und Querschnittsfläche

mittlere Abgasgeschwindigkeit

Messverfahren: DIN EN ISO 16911-1

Messeinrichtung: siehe 4.1.1

Querschnittsfläche:

Ermittlungsverfahren: direkte Maßbestimmung

Messeinrichtung: Messstab

Fläche der Volumenstrommesseinrichtung

zu Querschnittsfläche < 5 %: ☐ ja ☐ nein

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 15 von 24

4.2 Automatische Messverfahren

4.2.1 Messkomponente Gesamt org. Kohlenstoff (Ges.-C)

Messverfahren

Messprinzip: Flammenionisationsdetektor (FID)

Richtlinien: DIN EN 12619

Analysator 1

Hersteller / Typ: Testa / 2010T

Gerät eignungsgeprüft: ja, GMBl. Nr. 60/2000, S. 1193

Nachweisgrenze: <1,5 % vom Messbereichsendwert, lt. Hersteller

Messunsicherheit siehe Kapitel 6.3 des Messberichtes

Analysator 2

Hersteller / Typ: Testa / iFID

Gerät eignungsgeprüft: ja, BAnz AT. 03.05.2021 B10, Kap. I Nr. 4.2 Nachweisgrenze: 1 % vom Messbereichsendwert, lt. Hersteller

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Eingestellter Messbereich

Eingestellter Messbereich: 0 – 100 ppm

Gerät eignungsgeprüft

☑ Zertifizierung nach DIN EN 15267-4☑ Zertifizierung nach DIN EN 15267-3

☐ Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert

☐ Eignungsprüfung auf Basis der BEP ohne Zertifizierung

☐ Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert

Probenahme und Probenaufbereitung

Entnahmesonde: Edelstahl, beheizt

Länge Sonde: 0,5 m

Partikelfilter: Quarzfilter, beheizt

Probengasleitung: Teflon, beheizt auf 180°C, Länge: 15 m

Werkstoff gasführender Teile: Teflon, Edelstahl

Überprüfen von Null und Referenzpunkt mit Prüfgasen

Nullgas: über internen Aktivkohlefilter gereinigte Umgebungsluft

Prüfgas: 91,4 mol-ppm Propan in synthetischer Luft

Hersteller / Datum: Linde AG, 22.02.2022

Stabilitätsgarantie: 36 Monate

Rückführbar zertifiziert: ja. mit DKD Zertifikat

Aufgabe durch das gesamte

Probenahmesystem: ja

Einstellzeit des gesamten Messaufbaus

t_{90%}= ca. 10 s: Ermittlung mittels Stoppuhr bei druckloser

Prüfgasaufgabe an Probenahmesonde

Auftrags-Nr. 6367155.10 Rev. A

Berichtsdatum: 18.12.2024

Seite 16 von 24

Messwerterfassungssystem

Messwertregistrierung: Elektronische Datenerfassung

Hersteller: Endress & Hauser
Typ: Memograph M RSG40
Software: ReadWin 2000

Version: 1.27.5.0 Speicherzyklus: 1.27.5.0

Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich

Maßnahmen zur Qualitätssicherung

Jährliche Funktionskontrolle i.A. an DIN EN 14181

Justierung (Null- und Referenzpunkt) vor Messdurchführung

Prüfgasaufgabe am Analysator, anschließende

Prüfgasaufgabe an Entnahmesonde

Dichtigkeit ist bei Übereinstimmung der Messwerte gegeben.

Überprüfung (Null- und Referenzpunkt) nach erfolgter

Messdurchführung. Prüfung der Drift.

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 17 von 24

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

4.3.1 Messkomponente Formaldehyd (HCHO)

Messverfahren

Richtlinien Probenahme: Messen gasförmiger Emissionen, Messen von

Formaldehyd nach dem AHMT-Verfahren gemäß

VDI 3862-4: 2001-05

Messplatzaufbau

Entnahmesonde, Material: Duranglas- bzw. Titansonde, beheizt Partikelfilter, Material: Quarzwatte vor der Sonde im Abgaskanal

Ab-/Adsorptionseinrichtungen: 2 Frittenwaschflaschen in Reihe

Sorptionsmittel: bidestilliertes Wasser

Sorptionsmittelmenge: 2 x 50 ml
Länge Absaugrohr ca. 0,4 m
Ansaugöffnung bis Sorbens: ca. 0,6 m
Probentransfer: < 2 Tage
Beteiligung eines Fremdlabors: nein

Analytische Bestimmung

Richtlinien Analytik: VDI 3862-4: 2001-05,

photometrische Bestimmung mit AHMT

Aufarbeitung der Probe: entfällt

Analysengeräte Hersteller: Perkin Elmer

Typ: Lambda 2
Wellenlänge: $\lambda = 550 \text{ nm}$

Kenndaten Wellenlänge: $\lambda = 550$ i Küvettendicke: 1 cm

Kalibrierung / Standards: kalibrierter Messbereich: 0,0 bis 2,5 mg/l

Verfahrenskenngrößen und Art der Ermittlung

Querempfindlichkeit: keine festgestellt Bestimmungsgrenze: < 2 µg/Probe

< 0,03 mg/m³ (bei 0,06 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Maßnahmen zur Qualitätssicherung

Behandlung der Probenahmeeinrichtung

vor dem Einsatz: Reinigen der wiederverwendeten Glasteile

Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2 %

Analyse: Bestimmung eines Feldblindwertes

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 18 von 24

4.3.2 Messkomponente Methanol (CH₄O)

Messverfahren

Richtlinien Probenahme: VDI 2457

Adsorptionsverfahren

GC-Analyse

Messplatzaufbau

Entnahmesonde, Material: Duranglassonde, beheizt Partikelfilter, Material: Quarzwatte vor der Sonde

Abscheidemedium

Ab-/Adsorptionseinrichtungen: Adsorptionsröhrchen (Dräger)

Sorptionsmittel: Silicagel Typ G
Sorptionsmittelmenge: 1 x 1.000 mg
Länge Absaugrohr ca. 0,4 m
Ansaugöffnung bis Sorbens: ca. 0,6 m

Probentransfer: < 2 Tage gekühlt gelagert

Beteiligung eines Fremdlabors: nein

Analytische Bestimmung

Richtlinien Analytik: VDI 2457

Aufarbeitung der Probe: Desorption mit H₂O / Isopropanol 95:5

Analysengerät: Gaschromatograph
Kenndaten: GC Perkin Elmer mit FID

Trägergas Helium

Trennsäule Poraplot Q 30 m, ID 0,32 mm

Kalibrierung / Standards: externe Mehrpunktkalibrierung

entsprechende Verdünnung der Stammlösung

Verfahrenskenngrößen und Art der Ermittlung

Querempfindlichkeit: Bei Beachtung der QS - Maßnahmen keine

Bestimmungsgrenze: < 0,1 mg/Probe

< 1,67 mg/m³ (bei 0,06 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Maßnahmen zur Qualitätssicherung

Behandlung der Probenahmeeinrichtung

vor dem Einsatz: Reinigen der wiederverwendeten Glasteile

Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2 %

Analyse: Bestimmung eines Feldblindwertes

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 19 von 24

4.3.3 Messkomponente Propargylalkohol, 2-Butin-1,4-diol

Messverfahren

Richtlinien Probenahme: DIN CE:N/TS 13649:2015-03

Emissionen aus stationären Quellen - Bestimmung der Massenkonzentration von gasförmigen organischen Einzelverbindungen – Sorptive Probenahme und Lösemittelextraktion oder thermische Desorption

VDI 2457 Blatt 1

Messen gasförmiger Emissionen, Chromatographische Bestimmung organischer Verbindungen, Grundlagen

Messplatzaufbau

Entnahmesonde, Material: Duranglas- bzw. Titansonde, beheizt Partikelfilter, Material: Quarzwatte vor der Sonde im Abgaskanal

Abscheidemedium

Ab-/Adsorptionseinrichtungen:

Sorptionsmittel: imprägniertes XAD7, Aktivkohle

Sorptionsmittelmenge: 1.000 mg

Sammelschicht 750 mg, Kontrollschicht 250 mg

Adsorptionsröhrchen (Dräger, Analyt MTC)

Länge Absaugrohr ca. 0,4 m Ansaugöffnung bis Sorbens: ca. 0,6 m

Probentransfer: < 2 Tage, gekühlt gelagert

Beteiligung eines Fremdlabors: nein

Analytische Bestimmung

Richtlinien Analytik: DIN CEN/TS 13649:2015-03

Aufarbeitung der Probe: Desorptionsverfahren mit Schwefelkohlenstoff

Analysengerät: GC-MS-System Ion Trap mit CI-Option und Autosampler

Hersteller: Varian Analytical Instr.

Säule: Rtx-Volatiles, 60 m, ID 0,25 mm, FD 1,0 µm

Detektor: MSD Trägergas: Helium

Temperaturprogramm: 40°C, 1 min isotherm, 10 K/min auf 280°C, 5 min isotherm

Kalibrierverfahren: Kalibrierung mit internem Standard

Verwendete Standards: Entsprechende Verdünnung der Stammlösung

Verfahrenskenngrößen und Art der Ermittlung

Bestimmungsgrenze: < 1 µg/Probe

< 0,03 mg/m³ (bei 0,03 m³Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Maßnahmen zur Qualitätssicherung

Behandlung der Probenahmeeinrichtung

vor dem Einsatz: Reinigen der wiederverwendeten Glasteile

Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2 %

Analyse: Bestimmung eines Feldblindwertes

Auftrags-Nr. 6367155.10 Rev. A

Berichtsdatum: 18.12.2024

Seite 20 von 24

4.4 Messverfahren für partikelförmige Emissionen

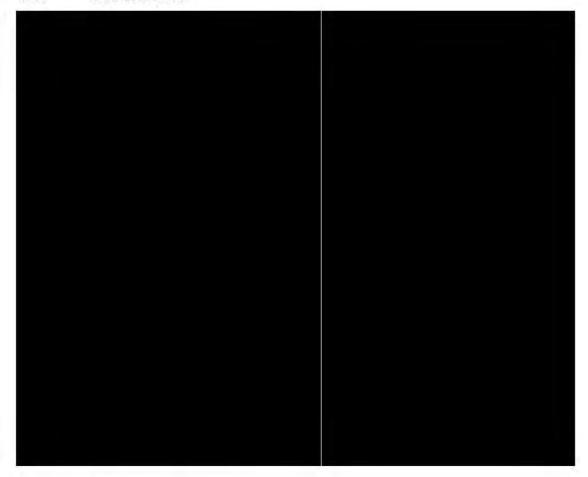
Entfällt

4.5 Besondere hochtoxische Abgasinhaltsstoffe

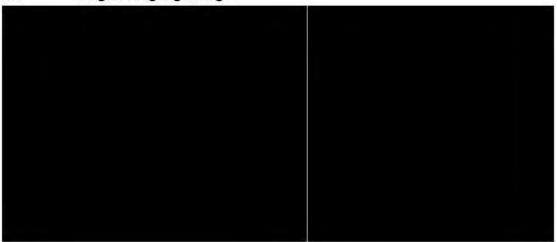
Entfällt

4.6 Geruchsemissionen

Entfällt


Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024

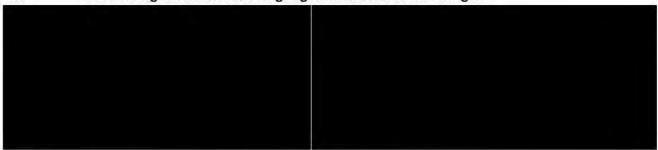
Seite 21 von 24


Betriebszustand der Anlage während der Messungen 5.

5.1 Produktionsanlage

5.1.1 Betriebsweise

5.2 Abgasreinigungsanlage



https://sgs.sharepoint.com/sites/de-ie-tuev-ffmfiles/Mess Tuev FFM/detsn_messtuev/Projekte/2022/Aufträge/02_RNP/22-6367155-Dq-BASF-EM 2022-Teil 2/010-Butindiol-F-EM-78/Messbericht/22-6367155-10-A-Butindiol-F-EM-dq.docx

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 22 von 24

6. Zusammenstellung der Messergebnisse und Diskussion

6.1 Beurteilung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Messkomponente:

Gesarntkohlenstoff [A 010]

Messung Nr.	Messzeitraum Datum [Uhr]		Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstrom [mg/m³] [kg/h]		
1	16.07.2024	12:10 - 12:39	1620,1	0,003	50	0,50	
2	16.07.2024	12:50 - 13:19	583,0	0,001	50	0,50	
3	16.07.2024	13:31 - 14:00	829,0	0,002	50	0,50	
4	16.07.2024	14:09 - 14:38	745,3	0,001	50	0,50	
Mittelwert			944,4	0,002			
Maximalwe	ert	- 3	1620,1	0,003	50	0,50	

Messkomponente:

Formaldehyd [A 010]

Messung Nr.	Datum	1000 CONTRACTOR 1000 CONTRAC		Massenstrom [g/h]	Emissionsbegrenzung Konzentration Massenstrom [mg/m³] [g/h]		
1	16.07.2024	12:10 - 12:40	302,2	0,60	5	12,5	
.2	16.07.2024	12:50 - 13:20	346,0	0,70	5	12,5	
3	16.07.2024	13:31 - 14:01	368,0	0,70	5	12,5	
4	16.07.2024	14:09 - 14:39	341,0	0,70	5	12,5	
Mittelwert			339,3	0,68			
Maximalwe	ert -		368,0	0,70	5	12,5	

Messkomponente:

org. Stoffe der Klasse I [A 010]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstron [mg/m³] [kg/h]		
1	16.07.2024	12:10 - 12:40	2542,7	0,005	20	0,10	
2	16.07.2024	12:50 - 13:20	2807,8	0,005	20	0,10	
3	16.07.2024	13:31 - 14:01	2855,8	0,005	20	0,10	
4	16.07.2024	14:09 - 14:39	2644,2	0,005	20	0,10	
Mittelwert			2712,6	0,005			
Maximalwe	ert		2855,8	0,005	20	0,10	

Organische Stoffe der Klasse I (hier: Methanol und Propargylalkohol)

https://sgs.sharepoint.com/sites/de-ie-tuev-ffmfiles/Mess Tuev FFM/detsn_messtuev/lProjekte/2022/Aufträge/02_RNP/22-6367155-Dq-BASF-EM 2022-Teil 2/010-Butindiol-F-EM-78/Messbericht/22-6367155-10-A-Butindiol-F-EM-dq.docx

Berichtsdatum: 18.12.2024 Seite 23 von 24

Messkomponente:

Gesarntkohlenstoff [B 089]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstre [mg/m³] [kg/h]	
1	16.07.2024	13:27 - 13:57	544,3	0,006	50	0,50
2	16.07.2024	14:03 - 14:33	1457,5	0,032	50	0,50
3	16.07.2024	14:37 - 15:07	3381,5	0,037	50	0,50
4	16.07.2024	15:17 - 15:47	816,2	0,034	50	0,50
Mittelwert			1549,9	0,027		
Maximalwe	ert		3381,5	0,037	50	0,50

Messkomponente:

Formaldehyd [B 089]

Messung Nr.	Datum	Messzeitraum Datum [Uhr]		Massenstrom [g/h]	Emissionsbegrenzung Konzentration Massenstro [mg/m³] [g/h]		
1	16.07.2024	13:37 - 14:07	0,6	<0,10	5	12,5	
2	16.07.2024	14:03 - 14:33	0,1	<0,10	5	12,5	
3	16.07.2024	14:37 - 15:07	0,3	<0,10	5	12,5	
4	16.07.2024	15:17 - 15:47	0,3	<0,10	5	12,5	
Mittelwert			0,3	<0,10		100	
Maximalwe	ert		0,6	<0,10	5	12,5	

Messkomponente:

Org. Stoffe der Klasse I [B 089]

Messung Nr.	Datum	Messzeitraum Datum [Uhr]		Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstrom [mg/m³] [kg/h]		
1	16.07.2024	13:27 - 13:57	6,2	0,0001	20	0,10	
2	16.07.2024	14:03 - 14:33	28,0	0,0006	20	0,10	
3	16.07.2024	14:37 - 15:07	59,8	0,0007	20	0,10	
4	16.07.2024	15:17 - 15:47	85,8	0,003	20	0,10	
Mittelwert			45,0	0,0011			
Maximalwe	ert		85,8	0,003	20	0,10	

Organische Stoffe der Klasse I (hier: Methanol, Propargylalkohol und 2-Butin-1,4-diol.)

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (273 K, 1013 hPa).

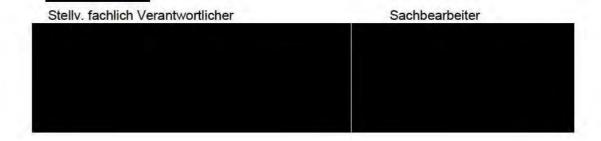
Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Seite 24 von 24

6.3 Messunsicherheiten

Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{6,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A 010	Gesamtkohlenstoff	mg/m³	1620,1	34,58	1586	1655	indirekter Ansatz
A 010	Formaldehyd	mg/m³	368,0	35,87	332	404	indirekter Ansatz
A 010	org. Stoffe der Klasse I	mg/m³	2855,8	262,000	2594	3118	indirekter Ansatz

Organische Stoffe der Klasse I (hier: Methanol und Propargylalkohol)

Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
B 089	Gesamtkohlenstoff	mg/m³	3381,5	69,78	3312	3451	indirekter Ansatz
B 089	Formaldehyd	mg/m³	0,6	0,06	1	1	indirekter Ansatz
B 089	Org. Stoffe der Klasse I	mg/m³	85,8	8,31	78	94	indirekter Ansatz


Organische Stoffe der Klasse I (hier: Methanol, Propargylalkohol und 2-Butin-1,4-diol.)

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (273 K, 1013 hPa).

6.4 Diskussion der Ergebnisse

Die Plausibilitätsprüfung der Messergebnisse in Hinblick auf die Anlagenauslastung während des Messzeitraums, erfolgte durch Kontrolle der Produktionsabläufe und der im Leitstand angezeigten Betriebsparameter und ergab keine Abweichung von der bestimmungsgemäßen Betriebsführung der Anlage. Unter Berücksichtigung der Anlagenauslastung während der Messungen ergeben sich durch den Vergleich der Messergebnisse miteinander und der Betriebsweise der Anlage keinerlei Unstimmigkeiten. Die ermittelten Messergebnisse erscheinen im Hinblick auf die Betriebsbedingungen während des Messzeitraums und die Bedingungen der Probenahme als plausibel.

Frankfurt, den 18.12.2024

Berichtsdatum: 18.12.2024

Anhang Seite 1 von 16

7. Anhang

.1		Mes	s- u	nd	Rec	henw	erte				
Auftr	aggeb	er. BAS	F SE								
uftr	agsnu	mmer 6367	7155.1	10							
nlag	ge:	Butin	ndiol-F	abrik							
	sort:	A 01	0								
ach	bearb	eiter.		1							
less	stag:	1	16.07	.2024	1	Uhrzeit	von	12:30 bis	12:35	Me	essung Nr. 1
tröi	muna	smessgerä	it				Achsen	anordnung		Kanalabme	ssungen
	Staur		Î				Automotin	anor arrang		a (D)=	170 mm
F	aktor	No. of Assessment Control					1	7 10		b=	mm
X	Anem	nometer					(D	/) b		A =	0,023 m ²
							X	1		Wandstärke =	mm
		Messnetz	1			Barom	otorctor		а	Mossetalla	nbeschreibung
		chsen 1 unkte 1				b ₀ =	1005	hPa		Höhe Quelle =	m
ruit	Zami	unite 1	1				1000			Fläche Quelle =	m²
e		Eintauch-	Diffe	renzo	iruck	Stat.	Tempe-	Strömungs-	100	Lage Kanal =	4.7.5
Achse	MP	tiefe	C. S.	[Pa]		Druck	ratur	geschw.	MP	Höhe Messst. =	m
_		[mm]	M 1	M 2	М3	[hPa]	[°C]	[m/s]		Einlaufstr. =	m
Α	1	85				0,02	23,2	<0,4	X	Auslaufstr. = Zahl Messöff. =	m Ctle
	-								-	Maß Messöff. =	Stk
									-	mais messon.	
				133						Feuchte	
٠.,				111					-		etermethode
										Temperatur trocken =	23 °C
				-					/	Temperatur feucht =	22,8 °C
	-								-		
				-			+			relative Feuchte =	98,37 %
										absolute Feuchte =	0,02 kg/m3 i.N.tr.
										Feuchte =	2,76 Vol. %
	-								-		
		-								Dichte	
										O ₂ =	0,1 Vol-%
										CO ₂ =	0,04 Vol-%
			_							Rest =	99,86 %
									_	Dichte Betrieb =	1,13261 kg/m³
	-			-					-		
									-	Mittelwerte	
			-							p _{stat} =	0 hPa
										t _v =	23 °C
									-	w = Verhältnis w _{max} /w _{min}	m/s
	-								-	Tomas Timax Timin	
									-	Volumenst	röme
										Betrieb =	m³/h
										Norm, feucht =	m³/h
										Norm, trocken =	m³/h
										Condensuio	
	-						-			Sondengröße Absaugerate	2,8 m³/h
			_	-	-	-			-	berechnet	#DIV/0! mm
		D.	enden		make 11					gewählt	mm

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Anhang Seite 2 von 16

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF SE

Berichtsnummer: 6367155.10

Anlage: D608

Messort: A 010

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-024

Messung-Nr.		1	2	3	4	
Datum		16.07.24	16.07.24	16.07.24	16.07.24	
Uhrzeit		12:10 - 12:39	12:50 - 13:19	13:31 - 14:00	14:09 - 14:38	
Barometerstand	[hPa]	1005	1005	1005	1005	
Feuchte Abgas	[Vol-%]	2,76	:2,76	2,76	2,76	
Abgasreinigung vorhanden		Nein	Nein	Nein	Nein	
Volumenstrom im Normzustand	[m³/h]	2	2	2	2	

Ergebnisse

Messwert	[mg/m³]	1586,8	574,3	820,7	741,6	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	1620,1	583,1	829,0	745,3	
Massenstrom	[kg/h]	0,003	0,001	0,002	0,001	
Gesamtmessunsicherheit	[mg/m³N,tr]	34,58	12,44	17,74	16,04	

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

Bewertung der Drif	ft		Werte wurden korrigiert
Drift max. abs. [%]	4,97		
Messende	Endpunkt	14:53	27,21
Ablesewert nach	Nullpunkt	16.07.24 14:53	1,29
Messbeginn	Endpunkt	11:27	25,28
Einstellwert vor	Nullpunkt	16.07.24	0,00

		tes Prüfgas chnet als Cges.	
Prüfgaskonzentration		Flaschen-	Haltbar
Sollwert	Einheit	nummer	bis
25,277	mg/m³	4961	04 / 2025

Berichtsdatum: 18.12.2024

Anhang Seite 3 von 16

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

 Auftraggeber:
 BASF

 Auftragsnummer:
 6367155.10

 Anlage:
 D 608

 Messort:
 A 010

Messkomponente: Formaldehyd

Bearbeiter:

PM-Nr. der Gasuhr:	641-21-014						
Messung-Nr.	7	1	2	3	4		
Datum		16.07.2024	16.07.2024	16.07.2024	16.07.2024		
Uhrzeit		12:10 - 12:40	12:50 - 13:20	13:31 - 14:01	14:09 - 14:39		
Barometerstand	[hPa]	1.005	1.005	1.005	1.005	1	
Zählerstand Anfang	[m³]	4,6620	4,7115	4,7822	4,8645		
Zählerstand Ende	[m³]	4,7113	4,7820	4,8644	4,9470		
Abgesaugtes Volumen	[m³]	0,049	0,071	0,082	0,083		
Temperatur an der Uhr	[°C]	28	32	34	34		
Sondentemperatur	[°C]	24	24	24	24		
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000		
Probenbezeichnung		11	12	13	14		
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja	ja		
Normvolumen	[m³]	0,044	0,063	0,072	0,073		
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]	÷	(4)	-			
Volumenstrom im Normzustand	[m³/h]	2	2	2	2		
Analysenergebnis	[mg/Probe]	13,300	21,800	26,500	24,900		
Konzentration	[mg/m³]	302,273	346,032	368,056	341,096		
Konzentration O ₂ -Bez.	[mg/m³]	-		8.1	9.00		
Massenstrom	[kg/h]	0,0006	0,0007	0,0007	0,0007		
Gesamtmessunsicherheit	[mg/m³]	29,47	33,73	35,87	33,25		
Blindwert							
Probenbezeichnung	1 = 0	10	×:				
mittleres Normvolumen	[m³]	0,063		I A I			
Analysenwert	[mg]	0,001	- 7		1 - 2 - 4	==:	
Analysenwert	[mg/m³]	0,016		-2-1			

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Anhang Seite 4 von 16

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

 Auftraggeber:
 BASF

 Auftragsnummer:
 6367155.10

 Anlage:
 D 608

Messort: A 010

Messkomponente: Methanol

		_				T
Messung-Nr.		1	2	3	4	
Datum		16.07.2024	16.07.2024	16.07.2024	16.07.2024	
Uhrzeit		12:10 - 12:40	12:50 - 13:20	13:31 - 14:01	14:09 - 14:39	
Barometerstand	[hPa]	1.005	1.005	1.005	1.005	
Zählerstand Anfang	[m³]	5,1110	5,1390	5,1671	5,1953	
Zählerstand Ende	[m³]	5,1388	5,1670	5,1952	5,2244	
Abgesaugtes Volumen	[m³]	0,028	0,028	0,028	0,029	
Temperatur an der Uhr	[°C]	29	33	35	35	
Sondentemperatur	[°C]	24	24	24	24	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	je -
Probenbezeichnung		21	22	23	24	
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja	
Normvolumen	[m³]	0,025	0,025	0,025	0,026	
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	20,90	
Bezugssauerstoffgehalt	[Vol-%]		- 81	-	- 15 L	- I
Volumenstrom im Normzustand	[m³/h]	2	2	2	2	
Analysenergebnis	[mg/Probe]	59,000	66,000	67,000	64,000	
Konzentration	[mg/m³]	2.360,000	2.640,000	2.680,000	2.461,538	
Konzentration O ₂ -Bez.	[mg/m³]			-		
Massenstrom	[kg/h]	0,0047	0,0053	0,0054	0,0049	
Gesamtmessunsicherheit	[mg/m³]	230,27	257,59	261,44	240,13	
Blindwert						
Probenbezeichnung		20	96			
mittleres Normvolumen	[m³]	0,025	4			
Analysenwert	[mg]	0,011				
Analysenwert	[mg/m³]	0,436				

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas irn Normzustand (273 K; 1013 hPa)

Berichtsdatum: 18.12.2024

Anhang Seite 5 von 16

Diskontinuierliche Probenahme und Auswertung bezüglich Propargylalkohol

BASF Auftraggeber:

Auftragsnummer: 6367155.10

D 608 Anlage: A 010

Messort: Propargylalkohol Messkomponente:

Bearbeiter:

Messung-Nr.		1	2	3	4	
Datum		16.07.2024	16.07.2024	16.07.2024	16.07.2024	
Uhrzeit		12:10 - 12:40	12:50 - 13:20	13:31 - 14:01	14:09 - 14:39	
Barometerstand	[hPa]	1.005	1.005	1.005	1.005	
Zählerstand Anfang	[m³]	6,0964	6,1296	6,1622	6,1950	
Zählerstand Ende	[m³]	6,1294	6,1620	6,1949	6,2288	
Abgesaugtes Volumen	[m³]	0,033	0,032	0,033	0,034	
Temperatur an der Uhr	[°C]	35	40	40	42	
Sondentemperatur	[°C]	24	24	24	24	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	
Probenbezeichnung		31	32	33	34	
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja	
Normvolumen	[m³]	0,029	0,028	0,029	0,029	
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	20,90	
Bezugssauerstoffgehalt	[Vol-%]		8	1 6 11	1 6 1	
Volumenstrom im Normzustand	[m³/h]	2	2	2	2	
Analysenergebnis	[mg/Probe]	5,300	4,700	5,100	5,300	
Konzentration	[mg/m³]	182,759	167,857	175,862	182,759	
Konzentration O ₂ -Bez.	[mg/m³]	(4)			-4-	
Massenstrom	[kg/h]	0,0004	0,0003	0,0004	0,0004	
Gesamtmessunsicherheit	[mg/m³]	17,83	16,37	17,16	17,82	
Blindwert			1			
Probenbezeichnung		30	$-\Delta = 0$	- 2-7		
mittleres Normvolumen	[m³]	0,029	-		1000	
Analysenwert	[mg]	< 0,005				
Analysenwert	[mg/m³]	< 0,174				

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

	aggeb							-			
	0.77	mmer: 6367									
	ge:	-		abrik							
	sort:	B 08	9	_							
	bearb	eiter:				A LOW MINO					
ess	stag:	_	16.07	.2024	_	Uhrzeit	von	13:27 bis	13:57	Mes	ssung Nr. 1
rö	Staur	smessgerä	t				Achsen	anordnung		Kanalabmes a (D)=	sungen 100 mm
F	aktor						1	7 -	9 9 9	b=	mm
_		ometer	d)				£	/) .		A=	0,008 m ²
) b		Wandstärke =	mm
		Messnetz					1		а	_	
		chsen 1					eterstar				beschreibung
٩n	zahl P	unkte 1	į.			b ₀ =	1005	hPa		Höhe Quelle =	m m²
	- 1	Eintauch-	Diffe	renzo	fruck	Stat.	Tompo	Strömungs-	- A	Fläche Quelle = Lage Kanal =	m²
	MP	tiefe	Dille	[Pa]	HUCK	Stat. Druck	Tempe- ratur	geschw.	MP	Höhe Messst. =	lm
	ivii	[mm]	M 1		МЗ	[hPa]	[°C]	[m/s]	ivit	Einlaufstr. =	m
١	1	50	.,,		1110	0,00	28,8	0,4	х	Auslaufstr. =	m
Ì						-,	25,5			Zahl Messöff. =	Stk
										Maß Messöff. =	mm
										40.00	
								-		Feuchte	41
								-		2-Thermome	
-	-									Temperatur trocken = Temperatur feucht =	29 °C 19,6 °C
					-		-	-		remperatur redent -	19,6
								. *		N. 12 Sec. Ac. 1	
	7) 1			+				relative Feuchte =	42,83 %
- 1	1 - 1									absolute Feuchte =	0,01 kg/m³ i.N.t
	jed									Feuchte =	1,71 Vol. %
-	455							-			
	-	-			-			-		Dichte	
- 1										O ₂ =	0,1 Vol-%
					-				11.7	CO ₂ =	0,04 Vol-%
								* * * * * * * * * * * * * * * * * * *		Rest =	99,86 %
										Dichte Betrieb =	1,11431 kg/m ³
	3-6										
									1	Mittalwarta	
		4								Mittelwerte p _{stat} =	0 hPa
						-				t _{tr} =	29 °C
										w =	0,4 m/s
	100									Verhältnis w _{max} /w _{min}	
								1		September 100	· · · · ·
								8		Volumenströ	The second of th
	1							-		Betrieb =	12 m³/h 11 m³/h
-		-			-					Norm, feucht = Norm, trocken =	11 m ³ /h
								-		Norm, trocken -	11 111 711
	7									Sondengröße	
										Absaugerate	2,8 m ³ /h
		- 7.7								berechnet	49,76 mm
					ante						

Blendenfaktor

Auftrags-Nr. 6367155.10 Rev. A

ulli	agsnu	mmer: 6367	155.	10				-0			
nlag	ge:	Butin	ndiol-l	Fabrik	(
ess	ort:	B 08	9								
ach	bearb	eiter:									and the first service
ess	tag:		16.07	.2024	1	Uhrzeit	von	14:03 bis	14:33	Me	ssung Nr. 2
röi	munas	smessgerä	it				Achsen	anordnung		Kanalabme	ssungen
101	Staur		1				Aciiseii	anorunung		a (D)=	100 mm
F	aktor							\		_ b=	mm
	Anem	ometer					(/		A =	0,008 m ²
		er broken.					V	1		Wandstärke =	mm
_		Messnetz	1			Parom	otoretar	10	а	Mossetollo	nbeschreibung
	zani Ad zahi P	chsen 1 unkte 1				b ₀ =	eterstar 1005	hPa		Höhe Quelle =	m
TAI L	Zui ii i	unite 1					1000			Fläche Quelle =	m²
U	-	Eintauch-	Diffe	renzo	druck	Stat.	Tempe-	Strömungs-	Fig. 1.0	Lage Kanal =	
Sellon	MP	tiefe		[Pa]		Druck	ratur	geschw.	MP	Höhe Messst. =	m
ζ	1714	[mm]	M 1		М3	[hPa]	[°C]	[m/s]		Einlaufstr. =	m
Α	1	50				0,00	28,9	0,88	X	Auslaufstr. =	m
	7.7		-		لسا					Zahl Messöff. =	Stk
										Maß Messöff. =	mm
-						-				Feuchte	
7										2-Thermome	etermethode
	1									Temperatur trocken =	29 °C
	1									Temperatur feucht =	19,5 °C
	7										
			_							relative Feuchte =	40.20.0/
-									- 3	absolute Feuchte =	42,32 % 0,01 kg/m³ i.N.
-	-		-		-	-	-		-	Feuchte =	1,69 Vol. %
	=							-		1 odonio	1,00 101. 70
	1-6										
										Diebte	
-	-	_			با	-		, ,		Dichte O ₂ =	0.11Vol-%
-			-			1				CO ₂ =	0,04 Vol-%
-	-	-						*	-	Rest =	99,86 %
					- 1					Dichte Betrieb =	1,11439 kg/m ³
	200				10.00						
-	- 1				-					Mittalwarta	
		-								Mittelwerte p _{stat} =	0 hPa
-						-				t _{tr} =	29 °C
										w=	0,88 m/s
	100									Verhältnis w _{max} /w _{min}	Serve division
	-									Windings A.	war a
				- 1	- }			- 0		Volumenstr	the same of the sa
-										Betrieb = Norm, feucht =	25 m³/h 22 m³/h
-4					-					Norm, trocken =	22 m³/h
\dashv								-		Norm, trocken -	22 111 /11
										Sondengröße	
							100			Absaugerate	2,8 m ³ /h
			_	_	_					berechnet	33,55 mm

Berichtsdatum: 18.12.2024

Anhang Seite 7 von 16

uftr	aggeb	er: BAS	F SE								
uftr	agsnu	mmer: 6367	155.1	0				, and the second			
nlag	ge:	Butir	ndiol-F	abrik							
ess	sort:	B 08	9					*			
ach	bearb	eiter:							4.79		and the second
ess	stag:		16.07	.2024		Uhrzeit	von	14:37 bis	15:07	Mes	ssung Nr. 3
	Staure	smessgerä	<u>it</u>				Achsen	<u>anordnung</u>		Kanalabmes a (D)=	sungen 100 mm
	aktor						1	1	-0-0-0	b=	mm
_		ometer	l,				(D	()		A =	0,008 m ²
) b		Wandstärke =	mm
nte	ilung	Messnetz					-		a	Til cher Street Life	
		chsen 1				Barom	eterstar				beschreibung
٩n	zahl P	unkte 1				b ₀ =	1005	hPa		Höhe Quelle =	m
_			D:22			01.1	_	01.0		Fläche Quelle =	m²
2	ME	Eintauch-	a force to A	renzd	ruck	Stat.	Tempe-	Strömungs-	NAD	Lage Kanal = Höhe Messst. =	Im
20100	MP	tiefe		[Pa]	112	Druck [hPa]	ratur [°C]	geschw.	MP	Hone Messst. = Einlaufstr. =	m m
4	1	[mm] 50	IVI	IVI Z	IVI 3	0,00	28,7	[m/s] 0,4	х	Auslaufstr. =	m
`	-1	30		-	1	0,00	20,1	0,4	^	Zahl Messöff. =	Stk
								-		Maß Messöff. =	mm
			-			-				man moccom.	
					-					<u>Feuchte</u>	
										2-Thermome	
	X = i							3 7		Temperatur trocken =	29 °C
	1		-							Temperatur feucht =	19,5 °C
	()							· ·			
-				-				*		relative Feuchte =	42,32 %
-							+==+		-	absolute Feuchte =	0,01 kg/m³ i.N.ti
-	1 3									Feuchte =	1,69 Vol. %
								*		2.23	
	1 - 1										
	0			- ,						Dishts	
-	-	_			_	-				Dichte O ₂ =	0.11Vol-%
-						1		-		CO ₂ =	0,04 Vol-%
=	-	3		-				×	-	Rest =	99,86 %
						-				Dichte Betrieb =	1,11439 kg/m ³
	500									7440 0444	The state of the s
										Mittelwerte	212
	1									p _{stat} =	0 hPa
										t _{tr} =	29 °C
								-		w = Verhältnis w _{max} /w _{min}	0,4 m/s
-						-				Tomax Timin	
H	-									Volumenströ	ime
								-		Betrieb =	12 m³/h
			2 2			Y		, Y		Norm, feucht =	11 m³/h
ľ	100		11							Norm, trocken =	11 m³/h
				_ =		, ===					
										<u>Sondengröße</u>	2.2
			4		= = 1		-			Absaugerate	2,8 m³/h
										berechnet	49,76 mm

Blendenfaktor

	-	Ir. 636	100.	10 R				Donomou	aturn.	18.12.2024 A	umang o	eite 9 von
uftr	aggebe	er: BAS	FSE									
ıftr	agsnur	nmer: 6367	155.1	0								
ilag	ge:	Butir	ndiol-F	abrik								
	ort:	B 08	9									
ch	bearbe	eiter:									Late Tax	
ess	stag:		16.07	.2024		Uhrzeit	von	15:17 bis	15:47	M	essung Nr.	4
röi	Stauro	messgerä	<u>it</u>				Achsen	anordnung		Kanalabm		mm
F	aktor	MIII.					1	1	-0-0-0	a (D)=	100	mm
		ometer	I,				(D	()		A=	0,008	17 N 1000 N
) b		Wandstärke =		mm
_		Messnetz					-		a			
		hsen 1					eterstar			<u>Messstell</u> Höhe Quelle =	enbeschre	
۱n	zahl Pi	unkte 1				b ₀ =	1005	hPa		Fläche Quelle =		m m²
	Т	Eintauch-	Diffe	renzd	ruck	Stat.	Tompo	Strömunge		Lage Kanal =		111
	MP	tiefe	Dille	[Pa]	uck	Druck	Tempe- ratur	Strömungs- geschw.	MP	Höhe Messst. =		lm
	TVIII	[mm]	M 1		М3	[hPa]	[°C]	[m/s]	ivit	Einlaufstr. =		m
1	1	50	.,,			0,00	29,0	1,65	х	Auslaufstr. =		m
						1	2010			Zahl Messöff. =		Stk
										Maß Messöff. =		mm
										40.00		
_										Feuchte 2-Thermon	atarmatha.	do
-	- 1	_			-					Temperatur trocken =		°C
-	1									Temperatur feucht =	19,5	
								-		15/1/6/4/4/1/15/4/10	10,0	
			1			7				A Company		
			7							relative Feuchte =	42,32	
	1.5									absolute Feuchte =		kg/m³ i.N.t
	-		-							Feuchte =	1,69	Vol. %
										<u>Dichte</u>		
					=					O ₂ =		Vol-%
										CO ₂ =		Vol-%
										Rest =	the second secon	
										Dichte Betrieb =	1,11439	kg/m³
	1									Mittelwerte	•	
								*		p _{stat} =		hPa
										t _{tr} =	29	°C
										w=	1,65	m/s
										Verhältnis w _{max} /w _{min}		
								- 1		Volumens	röme	
										Betrieb =		m³/h
						Y		J = 25 = 3	1	Norm, feucht =		m³/h
	1		11							Norm, trocken =	42	m³/h
	-									Sondengröße		
										Absaugerate	2,8	m³/h
	-									berechnet	24,50	mm
				konst								4 4 4 4 4 4 4

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Anhang Seite 10 von 16

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF SE

Berichtsnummer: 6367155.10

Anlage: Butindiol Fabrik

Messort: B 089

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-022

Messung-Nr.		1	2	3	4		
Datum		16.07.24	16.07.24	16.07.24	16.07.24		
Uhrzeit		13:27 - 13:57	14:03 - 14:33	14:37 - 15:07	15:17 - 15:47	9	
Barometerstand	[hPa]	1005	1005	1005	1005		
Feuchte Abgas	[Vol-%]	1,71	1,69	1,69	1,69		
Abgasreinigung vorhanden		Nein	Nein	Nein	Nein		
Volumenstrom im Normzustand	[m³/h]	11	22	11	42		

Ergebnisse

Messwert	[mg/m³]	534,4	1430,8	3318,7	800,8	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	544,4	1457,6	3381,5	816,2	
Massenstrom	[kg/h]	0,006	0,032	0,037	0,034	
Gesamtmessunsicherheit	[mg/m³N,tr]	11,46	30,22	69,78	17,12	

Bewertung der Drif	t		Werte wurden korrigiert
Drift max. abs. [%]			0,22
Messende	Endpunkt	15:58	146,83
Ablesewert nach	Nullpunkt	16.07.24	0,00
Messbeginn	Endpunkt	10:52	147,15
Einstellwert vor	Nullpunkt	16.07.24	0,00

		tes Prüfgas chnet als Cges.	
Prüfgaskor	nzentration	Flaschen-	Haltbar
Sollwert	Einheit	nummer	bis
147,154	mg/m³	5007	02 / 2025

Auftrags-Nr. 6367155.10 Rev. A

Berichtsdatum: 18.12.2024

Anhang Seite 11 von 16

Diskontinuierliche Probenahme und Auswertung bezüglich 2-Butin-1,4-diol

Auftraggeber:

BASF SE

Auftragsnummer:

6367155.10

Anlage:

Butindiol Fabrik

Messort:

B089

Messkomponente:

2-Butin-1,4-diol

Bearbeiter:

PM-Nr. der Gasuhr

541-21-014

Messung-Nr.		1	2	3	4		
Datum		16.07.2024	16.07.2024	16.07.2024	16.07.2024		
Uhrzeit		13:27 - 13:57	14:03 - 14:33	14:37 - 15:07	15:17 - 15:47		
Barometerstand	[hPa]	1.005	1.005	1.005	1.005		
Zählerstand Anfang	[m³]	4,5998	4,6200	4,6530	4,6874		
Zählerstand Ende	[m³]	4,6198	4,6528	4,6872	4,7237		
Abgesaugtes Volumen	[m³]	0,020	0,033	0,034	0,036		
Temperatur an der Uhr	[°C]	49	50	50	54		
Sondentemperatur	[°C]	29	29	29	29		
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000		
Probenbezeichnung		71	72	73	74		
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja		
Normvolumen	[m³]	0,017	0,028	0,029	0,030		
Sauerstoffgehalt	[Vol-%]	0,10	0,10	0,10	0,10		
Bezugssauerstoffgehalt	[Vol-%]	-					
Volumenstrom im Normzustand	[m³/h]	11	22	11	42		
Analysenergebnis	[mg/Probe]	< 0,001	< 0,001	< 0,001	< 0,001		
Konzentration	[mg/m³]	< 0,059	< 0,036	< 0,034	< 0,033		
Konzentration O ₂ -Bez.	[mg/m³]						
Massenstrom	[kg/h]	< 0,0001	< 0,0001	< 0,0001	< 0,0001		
Gesamtmessunsicherheit	[mg/m³]	0,01	0,00	0,00	0,00	TEL	11
Blindwert							
Probenbezeichnung		70		-	it, all		
mittleres Normvolumen	[m³]	0,026	-				1
Analysenwert	[mg]	< 0,001					
Analysenwert	[mg/m³]	< 0,038					

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Anhang Seite 12 von 16

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

Auftraggeber: BASF SE

Auftragsnummer: 6367155.10

Anlage: Butindiol Fabrik

Messort: B089

Messkomponente: Formaldehyd

Bearbeiter:

Bearbeiter: PM-Nr. der Gasuhr:	541-21-018					
Messung-Nr.	1	1	2	3	4	
Datum		16.07.2024	16.07.2024	16.07.2024	16.07.2024	
Uhrzeit		13:37 - 14:07	14:03 - 14:33	14:37 - 15:07	15:17 - 15:47	
Barometerstand	[hPa]	1.005	1.005	1.005	1.005	
Zählerstand Anfang	[m³]	1,1778	1,2330	1,2944	1,3578	
Zählerstand Ende	[m³]	1,2328	1,2942	1,3576	1,4242	
Abgesaugtes Volumen	[m³]	0,055	0,061	0,063	0,066	
Temperatur an der Uhr	[°C]	33	32	33	35	
Sondentemperatur	[°C]	29	29	29	29	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	
Probenbezeichnung		41	42	43	44	
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja	ja	
Normvolumen	[m³]	0,049	0,054	0,056	0,058	
Sauerstoffgehalt	[Vol-%]	0,10	0,10	0,10	0,10	
Bezugssauerstoffgehalt	[Vol-%]		40	÷	-	
Volumenstrom im Normzustand	[m³/h]	11	22	11	42	
Analysenergebnis	[mg/Probe]	0,032	0,007	0,019	0,021	
Konzentration	[mg/m³]	0,653	0,130	0,339	0,362	
Konzentration O ₂ -Bez	[mg/m³]		+)	-	-	
Massenstrom	[kg/h]	< 0,0001	< 0,0001	< 0,0001	< 0,0001	
Gesamtmessunsicherheit	[mg/m³]	0,06	0,01	0,03	0,04	
Blindwert						
Probenbezeichnung		40			14	
mittleres Normvolumen	[m³]	0,054	- 4	4		
Analysenwert	[mg]	< 0,002				
Analysenwert	[mg/m³]	< 0,037				

Auftrags-Nr. 6367155.10 Rev. A

Berichtsdatum: 18.12.2024

Anhang Seite 13 von 16

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

Auftraggeber: BASF SE

Auftragsnummer: 6367155.10

Anlage: Butindiol Fabrik

Messort: B089

Messkomponente: Methanol

Bearbeiter:

PM-Nr. der Gasuhr: 541-21-019

Messung-Nr.		1	2	3	4	
Datum		16.07.2024	16.07.2024	16.07.2024	16.07.2024	
Uhrzeit		13:27 - 13:57	14:03 - 14:33	14:37 - 15:07	15:17 - 15:47	
Barometerstand	[hPa]	1.005	1.005	1.005	1.005	
Zählerstand Anfang	[m³]	7,2463	7,2738	7,3038	7,3350	
Zählerstand Ende	[m³]	7,2735	7,3035	7,3348	7,3659	
Abgesaugtes Volumen	[m³]	0,027	0,030	0,031	0,031	1
Temperatur an der Uhr	[°C]	38	37	37	38	
Sondentemperatur	[°C]	29	29	29	29	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	
Probenbezeichnung	77	51	52	53	54	
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja	
Normvolumen	[m³]	0,024	0,026	0,027	0,027	
Sauerstoffgehalt	[Vol-%]	0,10	0,10	0,10	0,10	
Bezugssauerstoffgehalt	[Vol-%]	-			-	
Volumenstrom im Normzustand	[m³/h]	11	22:	11	42	
	The same of	1271.20		200	2,022	
Analysenergebnis	[mg/Probe]	0,150	0,700	1,600	2,300	
Konzentration	[mg/m³]	6,250	26,923	59,259	85,185	
Konzentration O ₂ -Bez.	[mg/m³]	I I in	-	+	+	
Massenstrom	[kg/h]	0,0001	0,0006	0,0007	0,0036	
Gesamtmessunsicherheit	[mg/m³]	0,61	2,63	5,78	8,31	
Blindwert						
Probenbezeichnung		50			اللها	
mittleres Normvolumen	[m³]	0,026				
Analysenwert	[mg]	0,011				
Analysenwert	[mg/m³]	0,423			1	

Auftrags-Nr. 6367155.10 Rev. A Berichtsdatum: 18.12.2024 Anhang Seite 14 von 16

Diskontinuierliche Probenahme und Auswertung bezüglich Propargylalkohol

Auftraggeber: BASF SE

Auftragsnummer: 6367155.10

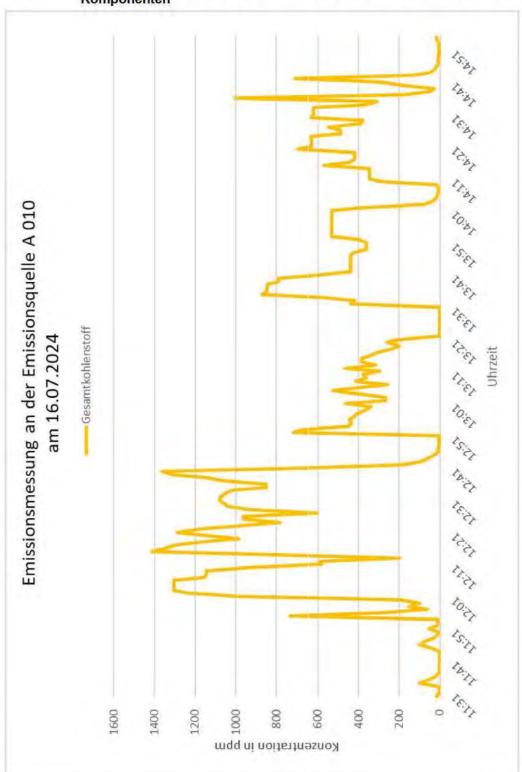
Anlage: Butindiol Fabrik

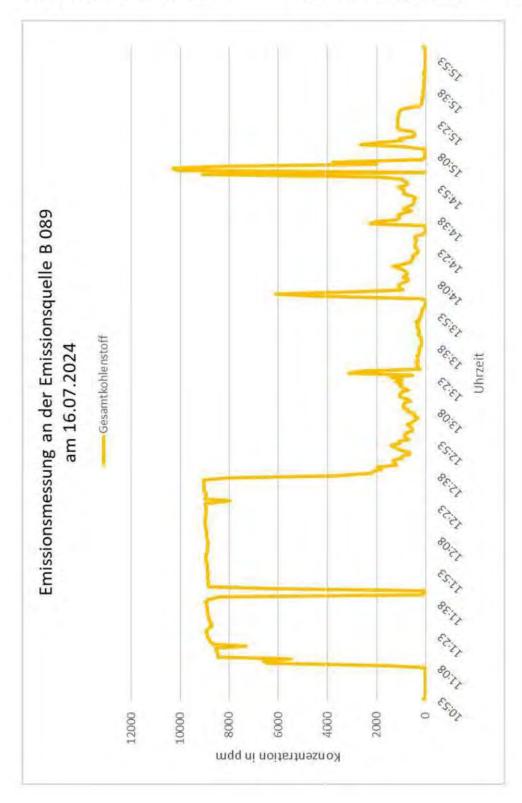
Messort: B089

Messkomponente: Propargylalkohol

Bearbeiter:

PM-Nr. der Gasuhr: 541-21-016


Messung-Nr.		1	2	3	4	
Datum		16.07.2024	16.07.2024	16.07.2024	16.07.2024	
Uhrzeit		13:27 - 13:57	14:03 - 14:33	14:37 - 15:07	15:17 - 15:47	
Barometerstand	[hPa]	1.005	1.005	1.005	1.005	
Zählerstand Anfang	[m³]	9,3712	9,4010	9,4319	9,4640	
Zählerstand Ende	[m³]	9,4009	9,4317	9,4638	9,4968	
Abgesaugtes Volumen	[m³]	0,030	0,031	0,032	0,033	
Temperatur an der Uhr	[°C]	48	48	45	49	
Sondentemperatur	[°C]	29	29	29	29	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	1
Probenbezeichnung		61	62	63	64	
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja	ja	
Normvolumen	[m³]	0,025	0,026	0,027	0,028	70
Sauerstoffgehalt	[Vol-%]	0,10	0,10	0,10	0,10	
Bezugssauerstoffgehalt	[Vol-%]	14		-1	-	
Volumenstrom im Normzustand	[m³/h]	11	22	11	42	
Analysenergebnis	[mg/Probe]	< 0,005	0,029	0,016	0,018	
Konzentration	[mg/m³]	< 0,200	1,115	0,593	0,643	
Konzentration O ₂ -Bez.	[mg/m³]	8 "	-8	- 9	-	
Massenstrom	[kg/h]	< 0,0001	< 0,0001	< 0,0001	< 0,0001	
Gesamtmessunsicherheit	[mg/m³]	0,02	0,11	0,06	0,06	
Blindwert						
Probenbezeichnung	===3	60	1302	100	-32-1	
mittleres Normvolumen	[m³]	0,027	= 0	1.9		
Analysenwert	[mg]	< 0,005	-80		1	
Analysenwert	[mg/m³]	< 0.189	4			


Auftrags-Nr. 6367155.10 Rev. A

Berichtsdatum: 18.12.2024

Anhang Seite 15 von 16

7.2 Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten

Bericht über die Durchführung von Emissionsmessungen

Betreiber: BASE SE

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Kaurit-Leim-Fabrik (Anlagen-Nr. 04.09) Anlage:

BASF SE Standort der Anlage:

Bau S 421

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Art der Messung: Wiederkehrende Emissionsmessung gemäß

§ 28 BlmSchG an genehmigungsbedürftigen

Anlagen

Aufgabenstellung: Emissionsmessungen in der Abluft der Auslässe A

015, A 030, A 072, A 074 und A 077.

Ausführendes Messinstitut:

bekannt gegebene Messstelle nach

§ 29b BlmSchG

DAkkS Akkreditierung als Prüflabor Modul

Immissionsschutz D-PL-12088-02

SGS-TÜV Saar GmbH

Schwanheimer Ufer 302

60529 Frankfurt

Abgasrandbedingungen, Gesamtkohlenstoff, Messkomponenten:

Gesamtstaub, Methanol, Ameisensäure,

Formaldehyd

5625528.21 Projekt-Nr.:

Auftrag Nr.: 10893:20652 vom 12.01.2021

Datum der Messung: 14.09.2021, 23.09.2024

Berichtsdatum: 14.01.2025

33 Seiten Berichtsumfang:

19 Seiten Anhang:

Revision:

SGS-TUV Saar GmbH Am TÜV 1 D-66280 Sulzbach t +49 6897 506 - 60 f +49 6897 506 - 102 www.sgs-tuev-saar.com

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 2 von 33

Zusammenfassung

Betreiber: BASF SE

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Standort der Anlage: BASF SE

Kaurit - Leim - Fabrik (Anlagen-Nr. 04.09)

Bau S 421

Carl Bosch-Straße 38

67056 Ludwigshafen am Rhein

Anlage: Genehmigungsbedürftige Anlage gemäß § 4 BlmSchG in

Verbindung mit Ziffer 4.1.8 G/E des Anhangs 1 der 4. BlmSchV.

Datum der Messung: 14.09.2021

Emissionsquelle: A 072 und A 077

Messergebnisse

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maximaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 077	Gesamtkohlenstoff	mg/m³	29,9	27	33	50	ja
A 077	Formaldehyd	mg/m³	2,9	3	3	1) 20/10	ja
A 077	Ameisensäure	mg/m³	0,7	1	1	20	ja
A 077	Methanol	mg/m³	1,0	1	1	20	jа
A 072	Staub	mg/m³	0,4	0,4	0,4	20	ja

Der Grenzwert gemäß TA Luft 2021 beträgt 10 mg/m³

Emissions- quelle	Messkomponente	Einheit	maximaler Massenstrom	Maximaler Massenstrom abzüglich Messunsicherheit	Maximaler Massenstrom zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 077	Formaldehyd	g/h	0,6	1	1	25	ja

Die Emissionsbegrenzung für den Massenstrom an Formaldehyd bezieht sich auf die gesamte Anlage.

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K).

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 3 von 33

Datum der Messung: 23.09.2024

Emissionsquelle: A 015, A 030 und A 074

Emissions- quelle	Messkomponente	Einheit	Maximaler Messwert	Maxımaler Messwert abzüglich Messunsicherheit	Maximaler Messwert zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 015	Gesamtkohlenstoff	mg/m³	<1,5	0,0	<4	50	Ja
A 015	Formaldehyd	mg/m³	0,14	0,1	0,2	ė	Ja
A 015	Ameisensäure	mg/m³	<0,4	<0,4	<0,4	20	Ja
A 015	Methanol	mg/m³	1,6	1	2	20	Ja
A 030	Gesamtkohlenstoff	mg/m³	2) 68,0	65	71	50	Ja
A 030	Formaldehyd	mg/m³	3,36	3,0	3,7	(e)	Ja
A 030	Ameisensäure	mg/m³	<0,4	<0,4	<0,4	20	Ja
A 030	Methanol	mg/m³	3,4	3	4	20	Ja
A 074	Staub	mg/m³	0,5	0,4	1	20	Ja

²⁾ Der Mittelwert über den Messzeitraum ist < 42,4 mg/m³

Emissions- quelle	Messkomponente	Einheit	maximaler Massenstrom	Maximaler Massenstrom abzüglich Messunsicherheit	Maximaler Massenstrom zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
A 015	Formaldehyd	g/h	1,5	1	2	25	Ja
A 030	Formaldehyd	g/h	<0,1	<0,1	<0,1	25	Ja

Die Emissionsbegrenzung für den Massenstrom an Formaldehyd bezieht sich auf die gesamte Anlage.

Für den Anlagenmassenstrom wurden die jeweils höchsten Massenströme der einzelnen Quellen addiert:

Emissions- quelle	Messkomponente	Einheit	maximaler Massenstrom	Maximaler Massenstrom abzüglich Messunsicherheit	Maximaler Massenstrom zuzüglich Messunsicherheit	Emissions- begrenzung	Zustand höchster Emissionen
Anlagen	Formaldehyd	g/h	<2,1	<2	2	25	ja

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K).

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 4 von 33

Inhalts	sverzeichnis	Seite
1.	Messaufgabe	5
1.1	Auftraggeber	5
1.2	Betreiber	5
1.3	Standort	5
1.4	Anlage	5
1.5	Datum der Messung	5
1.6	Anlass der Messung	5
1.7	Aufgabenstellung	5 5 5 5 6
1.8	Messkomponenten und Messgrößen	7
1.9	Ortsbesichtigung vor Messdurchführung	7
1.10	Messplanabstimmung	7
1.11	An der Messung beteiligte Personen	7
1.12	Beteiligung weiterer Institute	8
1.13	Stellv. fachlich Verantwortlicher	8
2.	Beschreibung der Anlage und der gehandhabten Stoffe	9
2.1	Bezeichnung der Anlage	9
2.2	Beschreibung der Anlage	9
2.3	Beschreibung der Emissionsquellen nach Betreiberangaben	10
2.4	Angabe der laut Genehmigungsbescheid mögliche Einsatzstoffe	10
2.5	Betriebszeiten nach Betreiberangaben	10
2.6	Einrichtung zur Erfassung und Minderung der Emissionen	10
3.	Beschreibung der Probenahmestelle	14
3.1	Messstrecke und Messquerschnitt	14
3.2	Lage der Messpunkte im Messquerschnitt	16
4.	Mess- und Analysenverfahren	18
4.1	Abgasrandbedingungen	18
4.2	Automatische Messverfahren	20
4.3	Manuelle Messverfahren für gas- und dampfförmige Emissionen	22
4.4	Messverfahren für partikelförmige Emissionen	25
4.5	Besondere hochtoxische Abgasinhaltsstoffe	26
4.6	Geruchsemissionen	26
5.	Betriebszustand der Anlage während der Messungen	27
5.1	Produktionsanlage	27
5.2	Abgasreinigungsanlage	27
6.	Zusammenstellung der Messergebnisse und Diskussion	28
6.1	Beurteilung der Betriebsbedingungen während der Messungen	28
6.2	Messergebnisse	29
6.3	Messunsicherheiten	33
6.4	Diskussion der Ergebnisse	33
7.	Anhang	1
71	Mess- und Rechenwerte	1

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 5 von 33

Messaufgabe

1.1 Auftraggeber

BASF SE Carl Bosch-Straße 38 67056 Ludwigshafen am Rhein

1.2 Betreiber

Entsprechend 1.1

Ansprechpartner:

Telefon: E-Mail:

1.3 Standort

BASF SE Kaurit-Leim-Fabrik (Anlagen-Nr. 04.09) Bau S 421 Carl Bosch-Straße 38 67056 Ludwigshafen am Rhein

1.4 Anlage

Genehmigungsbedürftige Anlage gemäß § 4 BlmSchG in Verbindung mit Ziffer 4.1.8 G/E des Anhangs 1 der 4. BlmSchV.

Hier: Anlage zur Herstellung von Kunststoffen (Kunstharzen, Polymeren, Chemiefasern, Fasern auf Zellstoffbasis).

1.5 Datum der Messung

Datum der Messung: 14.09.2021 (A 072, A 077) und 23.09.2024 (A 015, A 030, A 074)

Datum der letzten Messung: 12.12., 13.12. und 17.12.2018

Datum der nächsten Messung: 2024

1.6 Anlass der Messung

Dreijährig wiederkehrende Messung nach § 28 BlmSchG bei genehmigungsbedürftigen Anlagen.

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 6 von 33

1.7 Aufgabenstellung

Durchführung von Emissionsmessungen bei Normalbetrieb zur Überprüfung der Einhaltung der Emissionsbegrenzung an den Auslässen A 015, A 030, A 072 und A074 der Kaurit-Leim-Fabrik im Bau S 421 gemäß Genehmigungsbescheid vom 16.04.2015 (Az. 4-151F.Bl, Stadt Ludwigshafen am Rhein). Unter anderem sind dort folgende Emissionsgrenzwerte festgelegt:

Messkomponente	Grenzwert		
A 015 (Raumabsaugung Keller)			
Org. Stoffe, ausgenommen staubförmige	50 mg/m ³		
Organische Stoffe der Klasse 1 (hier: Ameisensäure, Methanol)	20 mg/m ³		
Formaldehyd	1) 20/10 mg/m ³		
A 030 (Rührreaktor R 1000)			
Org. Stoffe, ausgenommen staubförmige	50 mg/m ³		
Organische Stoffe der Klasse 1 (hier: Ameisensäure, Methanol)	20 mg/m ³		
Formaldehyd	1) 20/10 mg/m ³		
A 072 *) (Behälter B 1200)			
Gesamtstaub (Melamin)	20 mg/m ³		
A 074 (Behälter B 1100 und B 1220 bzw. 12	230)		
Gesamtstaub (Melamin)	20 mg/m ³		
Gesamtstaub (Harnstoff)	20 g/m ³		

¹⁾ Der Grenzwert gemäß TA Luft 2021 beträgt 10 mg/m³

Die Angaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K).

Durchführung von Emissionsmessungen bei Normalbetrieb zur Überprüfung der Einhaltung der Emissionsbegrenzung am Auslass A 077 der Kaurit-Leim-Fabrik im Bau S 421 gemäß Genehmigungsbescheid:

- vom 06.08.2007 (Az.: 5/51, 0/07/298/DAU, Struktur- und Genehmigungsdirektion Süd
- vom 26.07.2016 (AZ.: 4-151H.Gf, Stadt Ludwigshafen am Rhein)

Unter anderem sind dort folgende Emissionsgrenzwerte festgelegt:

Messkomponente	Grenzwerte		
A 077 (Rührreaktor R 2000 und Vakuumanlage)	während des Anfahrzustands (b1, b2) & des Abfahrzustands (c).	während des Normalbetriebs (a1)	
Org. Stoffe, ausgenommen staubförmige	100 mg/m ³	50 mg/m ³	
Organische Stoffe der Klasse 1 (hier: Ameisensäure, Methanol)	40 mg/m³	20 mg/m ³	
Formaldehyd	1) 40/10 mg/m ³	1) 20/10 mg/m ³	

¹⁾ Der Grenzwert gemäß TA Luft 2021 beträgt 10 mg/m³ (Normalbetrieb)

Mit der Anordnung vom 16.01.2023 (Az.: 23/05/5.1/2022/0732/GRO, Struktur- und Genehmigungsdirektion Süd) werden bzgl. Formaldehyd die o.g. Grenzwerte der Massenkonzentration durch den Anlagenmassenstrom von 25 g/h ersetzt.

^{*)} Laut Betreiberangaben handelt es sich beim Auslass A 072 um den im Genehmigungsbescheid unter Punkt 1.4 aufgeführten Auslass A 073. Der dargestellte Grenzwert und genehmigungsrechtliche Bezug hinsichtlich des Auslasses A 072 entspricht daher im Genehmigungsbescheid dem Auslass A 073.

Seite 7 von 33

1.8 Messkomponenten und Messgrößen

Emissionsquellen	Messkomponenten	Anzahl x Dauer, Art einer Einzelmessung		
A 015, A 030	Abgasrandbedinungen	begleitend über den Messzeitraum		
	org. Verbindungen angegeben als Gesamtkohlenstoff	je 3 x 0,5 h, Kontinuierlich		
	Formaldehyd	je 3 x 0,5 h, diskontinuierlich		
	Methanol	je 3 x 0,5 h, diskontinuierlich		
	Ameisensäure	je 3 x 0,5 h, diskontinuierlich		
A 072, A 074	Abgasrandbedinungen	begleitend über den Messzeitraum		
	Gesamtstaub	je 3 x 0,5 h, Diskontinuierlich		
A 077	Abgasrandbedinungen	begleitend über den Messzeitraum		
	org. Verbindungen angegeben als Gesamtkohlenstoff	Kontinuierlich über den Batchzeitraum		
	Formaldehyd	je 6 x 0,5 h, diskontinuierlich		
	Methanol	je 6 x 0,5 h, diskontinuierlich		
	Ameisensäure	je 6 x 0,5 h, diskontinuierlich		

Berichtsdatum: 14.01.2025

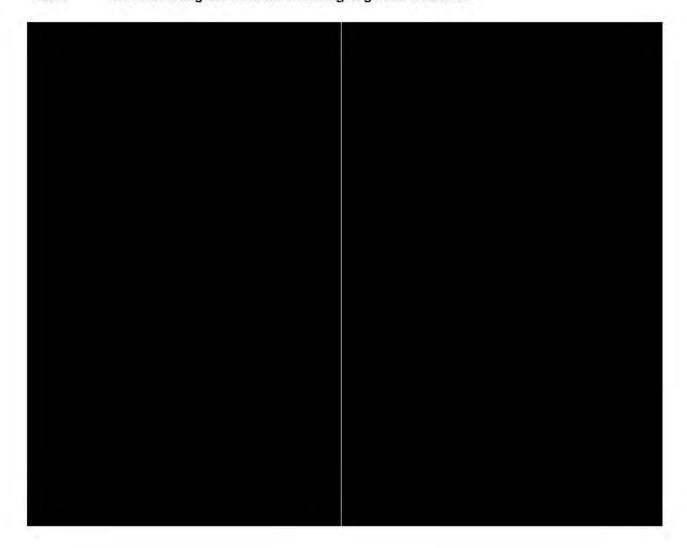
1.9 Ortsbesichtigung vor Messdurchführung ☑ Ortsbesichtigung durchgeführt am 26.07.2021 ☐ zusätzlich wurde eine ausführliche Anlagenbeschreibung durch den Auftraggeber zur Verfügung gestellt. Der Bericht der vorhergehenden Messungen liegt vor. ☐ keine Ortsbesichtigung durchgeführt ☐ mit vorherigen Messungen an dieser Anlage befasst, Örtlichkeiten sind bekannt ☐ zusätzlich wurde eine ausführliche Anlagenbeschreibung durch den Auftraggeber zur Verfügung gestellt. Der Bericht der vorhergehenden Messungen liegt vor. 1.10 Messplanabstimmung Die Durchführung der Messungen wurde mit vom Betreiber abgestimmt. Die erforderlichen Angaben wurden dem Landesamt für Umwelt Rheinland-Pfalz per E-Mail mitgeteilt. 1.11 An der Messung beteiligte Personen

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 8 von 33

1.12 Beteiligung weiterer Institute

keine

1.13 Stelly, fachlich Verantwortlicher


Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025

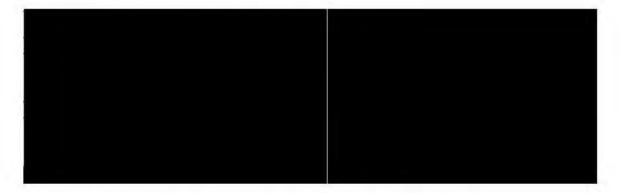
Seite 9 von 33

- 2. Beschreibung der Anlage und der gehandhabten Stoffe
- 2.1 Bezeichnung der Anlage

Entsprechend 1.4

- 2.2 Beschreibung der Anlage
- 2.2.1 Beschreibung der Produktionsanlagen gemäß Betreiber

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 10 von 33


2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Emissionsquelle	Höhe über Grund	Austrittsflasche	UTM-Koordinaten	Bauausführung
A 015	23 m	0,502 m ²	32457777 / 5485415	Stahl, Rund
A 030	23 m	0,005 m ²	32457790 / 5485433	Stahl, Rund
A 072	38 m	0,031m ²	32457781 / 5485463	Stahl, Rund
A 074	23 m	0,024 m ²	32457772 / 5485403	Stahl, Rund
A 077	33 m	0,005 m ²	32457781 / 5485475	Stahl, Rund

2.4 Angabe der laut Genehmigungsbescheid mögliche Einsatzstoffe

- 2.5 Betriebszeiten nach Betreiberangaben
- 2.5.1 Gesamtbetriebszeiten

2.5.2 Emissionszeit nach Betreiberangaben

- 2.6 Einrichtung zur Erfassung und Minderung der Emissionen
- 2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Art der Emissionserfassung

Bei den betrachteten Anlagen handelt es sich weitestgehend um geschlossene Systeme (ausgenommen: Raumabluft aus dem Keller Bau S 421) mit vollständiger Erfassung der entstehenden Emissionen.

- Auslass A 015: Rohrleitungssysteme, Ventilator, Kamin A 015
- Auslass A 030: Rohrleitungssysteme, Nassabscheider W 806, Kamin A 030
- Auslass A 072: Rohrleitungssysteme, Abluftfilter F 1200, Kamin A 072
- Auslass A 074: Rohrleitungssysteme, Abluftfilter F 1230, Kamin A 074
- Auslass A 077: Rohrleitungssysteme, Vakuumpumpen, Nassabscheider, F 2011, Kamin A 077

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 11 von 33

2.6.1.2 Ventilatorkenndaten

Emissionsquelle		Auslass A 015	
Hersteller:		TIPO	
Baujahr:		2014	
Тур:		TCBTX2	
Inventar Nr.:	73.273.3	1719629	
Nennleistung:	[m ³ /h]	18.000	
Betriebsdruck:	[mmWS]	k.A.	
Drehzahl:	[min-1]	1.400	
Motorleistung:	KW	3,6	

Zwei Vakuumpumpen vor dem Auslass A 077

Emissionserfassung:		Vacuumpumpe		
Hersteller		Sterling SIHI GmbH		
Baujahr:		2004		
Typ:		LEHA 600	LPH 55320	
Hersteller-Nr:		04-8974201	04-8593641	
Nennleistung:	[m ³ /h]	550	350	

Die beiden Vakuumpumpen vor dem Auslass A 077 können sowohl einzeln als auch parallel betrieben werden.

2.6.2 Einrichtung zur Verminderung der Emissionen

Gewebefilter

Emissionsquelle	Auslass A 072	Auslass A 074
Bezeichnung:	F 1200	F 1230
Hersteller:	Fa. Herding	FAT
Тур:	Sinterlamellenfilter HSL 900-8/8G	HFR 6.16 K1.1
Baujahr:	2004	2001
Anzahl der Filterkammern:	1	1
Anzahl der Schläuche / Taschen:	8	k.A.
Filterfläche:	15	9,4
Filterfläschebelastung [m3/m2. min1]	1,01 (im Messzeitraum)	max. 1,50 (im Messzeitraum)
Filtermaterial:	Sinter-Lamellen	Polyester-Nadelfilz
Art der Abreinigung:	Pneumatisch	Mechanisch
eingestellter [sec.] Abreinigungszyklus	siehe Ziffer 5.2.	siehe Ziffer 5.2.
Letzter Filtertuchwechsel:	siehe Ziffer 5.2.	siehe Ziffer 5.2.
ΔP zw. Roh- und [mbar] Reingasseite:	siehe Ziffer 5.2.	siehe Ziffer 5.2.
Volumenstrom [m³/h]	1000	500
Art des Staubaustrags:	Keiner, nur beim Filterelement- wechsel	k.A.
Wartungsintervall:	siehe Ziffer 5.2.	siehe Ziffer 5.2.
Letzte Wartung:	siehe Ziffer 5.2.	siehe Ziffer 5.2.

Berichtsdatum: 14.01.2025

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 13 von 33

Nassabscheider:

Emissionsquelle	Auslass A 030	Auslass A 077	
Bezeichnung:	W 806	F 2011	
Hersteller:	k.A.	Rauschert Verfahrenstechnik GmbH	
Typ:	Füllkö	rperkolonne	
Baujahr:	k.A.	2001	
Fabrik Nr.:	k.A.	10329	
Arbeitsprinzip des Nassabscheiders:	Wa	aschturm	
Waschflüssigkeitsführung:	Ge	genstrom	
Wäscheraufbau:	Füllkörper		
Höhe der Füllkörpersäule:	ca. 1,8 m	3 m	
Art der Füllkörper:	Raschigringe		
Art der Waschflüssigkeit	Flusswasser	VE-Wasser	
Zusätze für Waschflüssigkeit:	Keine	Keine	
Menge der frischen zugesetzten Waschflüssigkeit:	siehe Ziffer 5.2.	siehe Ziffer 5.2.	
Rhythmus der Waschflüssigkeitserneuerung:	Kor	tinuierlich	
pH - Wert:	siehe Ziffer 5.2	siehe Ziffer 5.2	
Bauart des Tropfenabscheiders:	Mischkondensator	Demister	
Letzte Erneuerung der Waschflüssigkeit im Absetzbecken:	siehe Ziffer 5.2	siehe Ziffer 5.2	
Wartungsintervall:	siehe Ziffer 5.2	siehe Ziffer 5.2	
Letzte Wartung:	siehe Ziffer 5.2	siehe Ziffer 5.2	

2.6.3 Einrichtung zur Verdünnung des Abgases

Entfällt

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 14 von 33

3. Beschreibung der Probenahmestelle

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Emissionsquelle	Lage Abgaskanal	Höhe der Probenahmestelle
A 015	vertikal	23 m
A 030	vertikal	23 m
A 072	Horizontal	38 m
A 074	Horizontal	20 m
A 077	Vertikal	30 m

Emissionsquelle	Kanal- abmessung	Fläche Querschnitt	Einlauf- strecke	Auslauf- strecke
A 015	0,6 m	0,283 m ²	1,0 m	1,7 m
A 030	0,08 m	0,005 m ²	0,32 m	0,15 m
A 072	0,2 m	0,031 m ²	0,4 m	0 m
A 074	0,16 m	0,02 m ²	0,95 m	5 m
A 077	0,11 m	0,010 m ²	>0,7 m	>0,25 m

Empfehlungen nach DIN EN 15259

Emissionsquelle	Einlaufstrecke ≥ 5 dh	Auslaufstrecke ≥ 2 dh	Abstand bis zur Mündung ≥ 5 dh
A 015	nein	nein	nein
A 030	nein	nein	nein
A 072	nein	nein	nein
A 074	ja	ja	ja
A 077	ja	ja	ja

3.1.2 Arbeitsfläche und Messbühne

Emissionsquelle	Probenahme- stelle	Arbeitsplatz	Traversier- fläche	Wetterschutz
A 015	im Freien	im Gebäude	ausreichend	vorhanden
A 030	im Freien	im Gebäude	ausreichend	vorhanden
A 072	im Freien	im Freien	ausreichend	vorhanden
A 074	im Freien	im Gebäude	ausreichend	vorhanden
A 077	im Freien	im Freien	ausreichend	vorhanden

Berichtsdatum: 14.01.2025

Seite 15 von 33

Emissionsquelle	Arbeitsbühne	Zugang zur Probenahmestelle	Energie- versorgung	Wasser	
A 015	A 015 vorhanden über Treppen, Aufzug, Steigleiter		230 V	nicht relevant	
A 030	A 030 vorhanden		230 V	nicht relevant	
A 072	vorhanden	über Treppen, Aufzug, Steigleiter	230 V	nicht relevant	
A 074	A 074 vorhanden		230 V	nicht relevant	
A 077	A 077 vorhanden		230 V	nicht relevant	

3.1.3 Messöffnungen

Emissionsquelle	Anzahl, Größe der Messöffnung	Gewinde	Anordnung
A 015	015 2 x Ø = 25 mm keine		um 90° versetzt
A 030	1 x Ø = 30 mm	keine	12-
A 072	Mündung	(inc.)	120
A 074	1 x 3"	Aussengewinde	140)
A 077	3 x Ø = 30 mm	keine	übereinander

3.1.4 Strömungsbedingungen im Messquerschnitt

Emissionsquelle	Winkel Gasstrom zu Mittelachse	lokale negative Strömung	Mindest- geschwindigkeit vorhanden	Verhältnis max. zu min. Geschwindigkeit
A 015	<15°	keine	ja	ja
A 030	<15°	keine	ja	nicht relevant
A 072	<15°	keine	ja	nicht relevant
A 074	<15°	keine	ja	nicht relevant
A 077	<15°	keine	ja	nicht relevant

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Die Strömungsbedingungen nach DIN EN 15259 sind erfüllt.

Berichtsdatum: 14.01.2025 Seite 16 von 33

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt

Die Lage der Messpunkte im Messquerschnitt entspricht der DIN EN 15259.

3.2.2 Homogenitätsprüfung

Emissionsquelle: A15	Emissionsquelle: A 030, A 072, A 074, A 077
Homogenitätsprüfung:	Homogenitätsprüfung:
☐ durchgeführt (siehe Ergebnisse in Nr. 6)	\square durchgeführt (siehe Ergebnisse in Nr. 6)
⊠ nicht durchgeführt, weil:	☑ nicht durchgeführt, weil:
☐ Fläche Messquerschnitt < 0,1 m²	☑ Fläche Messquerschnitt < 0,1 m²
☐ Netzmessung	☐ Netzmessung
☑ liegt vor	☐ liegt vor
Datum der Homogenitätsprüfung: 22.01.15	Datum der Homogenitätsprüfung:
Berichts-Nr.:05/16Ma	Berichts-Nr.:
Prüfinstitut: BASF SE ESE/ML	Prüfinstitut:
Ergebnis der Homogenitätsprüfung:	Ergebnis der Homogenitätsprüfung:
⊠ Messung an einem beliebigen Punkt	\square Messung an einem beliebigen Punkt
☐ Messung an einem repräsentativen Punkt	☐ Messung an einem repräsentativen Punkt
Beschreibung der Lage des repräsentativen Punkts:	Beschreibung der Lage des repräsentativen Punkts:
☐ Netzmessung	☐ Netzmessung

3.2.3 Komponentenspezifische Darstellung

Emissionsquelle: A 015

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt
Strömungs- geschwindigkeit	2	2			
Abgastemperatur	1	1			
Gasförmige Komponenten	1	1			

Berichtsdatum: 14.01.2025

Seite 17 von 33

Emissionsquelle: A 030, A 072, A 074, A 077

Messkomponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt
Strömungs- geschwindigkeit	1	1			
Abgastemperatur	1	1			
Gas- bzw. Partikelförmige Komponenten	1	1			

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 18 von 33

4. Mess- und Analysenverfahren

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Messverfahren: DIN EN ISO 16911-1 Staudrucksonde (Typ L bzw. Typ S) in

Verbindung mit Mikromanometer

Hersteller: Airflow Typ: PVM 620

Messbereich:

Letzte Überprüfung / Kalibrierung:

Kontinuierliche Ermittlung:

□ ja ☑ nein

Netzmessung:

1-Min-Mittelwert

3 Ablesungen innerhalb 1-Minute

Messverfahren: DIN EN ISO 16911-1 Anemometer (Flügelradanemometer)

Hersteller: Ahlborn

Typ: ALME:MO 2590-4AS / FD A602S1K / FDA602S6K

Messbereich:0 bis + 40 m/sLetzte Überprüfung / Kalibrierung:02/2024 / jährlichKontinuierliche Ermittlung:☑ ja ☐ nein

4.1.2 Statischer Druck im Abgaskanal

Messverfahren: in Anlehnung an DIN EN ISO 16911-1

Mikromanometer unter Berücksichtigung der

entsprechenden Anschlüsse

Hersteller: Airflow Typ: PVM 620

Messbereich:

Letzte Überprüfung / Kalibrierung:

Kontinuierliche Ermittlung:

- 3735 bis + 3735 Pa
02/2024 / jährlich
□ ja ☒ nein

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messverfahren: Digital-Barometer

Hersteller: Airflow Lufttechnik GmbH

Typ: DB2

Messbereich:+ 700 bis + 1100 hPaLetzte Überprüfung / Kalibrierung:08/2024 / ½ jährlichKontinuierliche Ermittlung:□ ja ☑ nein

4.1.4 Abgastemperatur

Messverfahren: NiCr/Ni-Thermoelement mit elektronischer

Nullpunktkompensation

Hersteller: Fa. Ahlborn

Typ: ALME:MO 2690-8A

Messbereich: - 200 bis + 1100°C

Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich

Kontinuierliche Ermittlung: ⊠ ja □ nein

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 19 von 33

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messverfahren: Psychrometrische Feuchtemessung

Zwei-Thermometermethode

Hersteller: Fa. Ahlborn

Typ: Ni-Cr-Ni Thermoelemente (Typ K)

Messbereich: 0 bis 100 % rel. Feuchte

Einsatzbereich: 0 bis + 100 °C
Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich
Kontinuierliche Ermittlung: ⊠ ja □ nein

4.1.6 Abgasdichte

Berechnet unter Berücksichtigung der Abgastemperaturen und der Druckverhältnisse sowie der Abgasbestandteile an Sauerstoff (O₂), Kohlendioxid (CO₂), Rest als Stickstoff (N₂) und der Abgasfeuchte (Wasserdampfanteil im Abgas)

4.1.7 Abgasverdünnung

Entfällt

4.1.8 Volumenstrom

Ermittlungsmethode: Berechnet aus mittlerer Strömungsgeschwindigkeit

und Querschnittsfläche

mittlere Abgasgeschwindigkeit

Messverfahren: DIN EN ISO 16911-1

Messeinrichtung: siehe 4.1.1

Querschnittsfläche:

Ermittlungsverfahren: direkte Maßbestimmung

Messeinrichtung: Messstab

Fläche der Volumenstrommesseinrichtung

zu Querschnittsfläche < 5 %: ⊠ ja □ nein

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 20 von 33

4.2 Automatische Messverfahren

4.2.1 Messkomponente Gesamt org. Kohlenstoff (Ges.-C) Messverfahren Flammenionisationsdetektor (FID) Messprinzip: Richtlinien: **DIN EN 12619** Analysator Bernath Atomic / SICK / BA 3006 Hersteller / Typ: ia, GMBI 1996 Nr.: 08/96 Seite 188 ff. Gerät eignungsgeprüft: 1 % vom Messbereichsendwert, lt. Hersteller Nachweisgrenze: Messunsicherheit: siehe Kapitel 6.3 des Messberichtes Eingestellter Messbereich 0 - 100 ppmEingestellter Messbereich: Gerät eignungsgeprüft ☐ Zertifizierung nach DIN EN 15267-4 ☐ Zertifizierung nach DIN EN 15267-3 Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert ☑ Eignungsprüfung auf Basis der BEP ohne Zertifizierung Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert Probenahme und Probenaufbereitung Entnahmesonde: Edelstahl, beheizt Länge Sonde: 1.5 m Partikelfilter: Quarzfilter Probengasleitung: Teflon, beheizt auf 180°C, Länge: 3 m Werkstoff gasführender Teile: Teflon, Edelstahl Überprüfen von Null und Referenzpunkt mit Prüfgasen Nullgas: gereinigter Stickstoff. über internen Aktivkohlefilter gereinigte Umgebungsluft Prüfgas: 91,4 mol-ppm Propan in synthetischer Luft

Hersteller / Datum: Linde AG, 22.02.2022

Stabilitätsgarantie: 36 Monate

Rückführbar zertifiziert: ja, mit DKD Zertifikat

Aufgabe durch das gesamte

Probenahmesystem: ja

Einstellzeit des gesamten Messaufbaus

t_{90%}= ca. 10 s: Ermittlung mittels Stoppuhr bei druckloser Prüfgasaufgabe an Probenahmesonde

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 21 von 33

Messwerterfassungssystem

Messwertregistrierung: Elektronische Datenerfassung

Hersteller: Endress & Hauser
Typ: Memograph M RSG40
Software: ReadWin 2000

Version: 1.27.5.0 Speicherzyklus: 1 s

Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich

Messwertregistrierung: Rechnergestützte Datenerfassung

Software: Hersteller / Version Kirsten Controlsystems GmbH / Trendows 2.5

Abtastrate: 0,1 s Speicherzyklus (Mittelwert): 1 min

Hardware: Hersteller / Typ: Advantech / ADAM 4017

Auflösung: 16 Bit

Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich

Messwertregistrierung: Elektronische Datenerfassung

Hersteller: Ahlborn

Typ: Almemo 2690-8A Software: AMR Control

Version: 5.14 Speicherzyklus: (Mittelwert) 1 min

Letzte Überprüfung / Kalibrierung: 02/2024 / jährlich

Maßnahmen zur Qualitätssicherung

Jährliche Funktionskontrolle i.A. an DIN EN 14181

Justierung (Null- und Referenzpunkt) vor Messdurchführung

Prüfgasaufgabe am Analysator, anschließende

Prüfgasaufgabe an Entnahmesonde

Dichtigkeit ist bei Übereinstimmung der Messwerte gegeben.

Überprüfung (Null- und Referenzpunkt) nach erfolgter

Messdurchführung. Prüfung der Drift.

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 22 von 33

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

4.3.1 Messkomponente Ameisensäure

Messverfahren

Richtlinien Probenahme: VDI 2457

Adsorptionsverfahren

GC-Analyse

Messplatzaufbau

Entnahmesonde, Material: Quarzsonde, beheizt

Partikelfilter, Material: Quarzwatte vor der Sonde im Abgaskanal

Ab-/Adsorptionseinrichtungen: Adsorptionsröhrchen (Dräger)

Sorptionsmittel: Silicagel Typ G Sorptionsmittelmenge: 1.580 mg

Sammelschicht: 1.100 mg, Kontrollschicht: 480 mg

Länge Absaugrohr ca. 0,2 m
Ansaugöffnung bis Sorbens: ca. 0,25 m
Probentransfer: < 5 Tage

Beteiligung eines Fremdlabors: nein

Analytische Bestimmung

Richtlinien Analytik: VDI 2457

Gerät: Gasc:hromatograph (GC)

Headspace-Technik

Kalibrierung / Standards: externe Mehrpunktkalibrierung (> 3)

entsprechende Verdünnung der Stammlösung

Verfahrenskenngrößen und Art der Ermittlung

Querempfindlichkeit: Bei Beachtung der QS - Maßnahmen keine

Bestimmungsgrenze: 0,001 mg/Probe

< 0,016 mg/m³ (bei 0,06 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Maßnahmen zur Qualitätssicherung

Behandlung der Probenahmeeinrichtung

vor dem Einsatz: Reinigen der wiederverwendeten Glasteile

Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2 %

Analyse: Bestimmung eines Feldblindwertes

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 23 von 33

4.3.2 Messkomponente Formaldehyd (HCHO)

Messverfahren

Richtlinien Probenahme: Messen gasförmiger Emissionen, Messen von

Formaldehyd nach dem AHMT-Verfahren gemäß

VDI 3862-4: 2001-05

Messplatzaufbau

Entnahmesonde, Material: Duranglas- bzw. Titansonde, beheizt Partikelfilter, Material: Quarzwatte vor der Sonde im Abgaskanal

Ab-/Adsorptionseinrichtungen: 2 Frittenwaschflaschen in Reihe

Sorptionsmittel: bidestilliertes Wasser

Sorptionsmittelmenge: 2 x 50 ml
Länge Absaugrohr ca. 0,2 m
Ansaugöffnung bis Sorbens: ca. 0,25 m
Probentransfer: < 2 Tage
Beteiligung eines Fremdlabors: nein

Analytische Bestimmung

Richtlinien Analytik: VDI 3862-4: 2001-05,

photometrische Bestimmung mit AHMT

Aufarbeitung der Probe: entfällt
Analysengeräte Hersteller: Perkin Elmer
Tvp: Lambda 2

Typ: Lambda 2 Kenndaten Wellenlänge: $\lambda = 550 \text{ nm}$ Küvettendicke: 1 cm

Kalibrierung / Standards: kalibrierter Messbereich: 0,0 bis 2,5 mg/l

Verfahrenskenngrößen und Art der Ermittlung

Querempfindlichkeit: keine festgestellt Bestimmungsgrenze: <2 µg/Probe

< 0,03 mg/m³ (bei 0,06 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Maßnahmen zur Qualitätssicherung Behandlung der Probenahmeeinrichtung

vor dem Einsatz: Reinigen der wiederverwendeten Glasteile

Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2 %

Analyse: Bestimmung eines Feldblindwertes

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 24 von 33

4.3.3 Messkomponente Methanol (CH₄O)

Messverfahren

VDI 2457 Richtlinien Probenahme:

Adsorptionsverfahren

GC-Analyse

Messplatzaufbau

Entnahmesonde, Material: Duranglassonde, beheizt Quarzwatte vor der Sonde Partikelfilter, Material:

Abscheidemedium

Ab-/Adsorptionseinrichtungen: Adsorptionsröhrchen (Dräger)

Sorptionsmittel: Silicagel Typ G Sorptionsmittelmenge: 1 x 1.000 mg Länge Absaugrohr ca. 0,2 m Ansaugöffnung bis Sorbens: ca. 0,25 m

Probentransfer: < 2 Tage gekühlt gelagert

Beteiligung eines Fremdlabors: nein

Analytische Bestimmung

Richtlinien Analytik: VDI 2457

Desorption mit H₂O / Isopropanol 95:5 Aufarbeitung der Probe:

Analysengerät: Gaschromatograph Kenndaten: GC Perkin Elmer mit FID

Trägergas Helium

Trennsäule Poraplot Q 30 m, ID 0,32 mm

Kalibrierung / Standards: externe Mehrpunktkalibrierung

entsprechende Verdünnung der Stammlösung

Verfahrenskenngrößen und Art der Ermittlung

Querempfindlichkeit: Bei Beachtung der QS - Maßnahmen keine

Bestimmungsgrenze: < 0.1 mg/Probe

< 1,67 mg/m³ (bei 0,06 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

Maßnahmen zur Qualitätssicherung

Behandlung der Probenahmeeinrichtung

vor dem Einsatz: Reinigen der wiederverwendeten Glasteile

Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2 %

Analyse: Bestimmung eines Feldblindwertes Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 25 von 33

44 Messverfahren für partikelförmige Emissionen

4.4.1 Gesamtstaub Messkomponente

Messverfahren

Richtlinie Probenahme und Bestimmung: DIN EN 13284-1 Ermittlung der Staubmassenkonzentration

In-Stack-Filtration

bei geringen Staubkonzentrationen - Teil 1: Manuelles gravimetrisches Verfahren; VDI-Richtlinie 2066 Blatt 1 Messen von Partikeln; Staubmessung in strömenden Gasen;

Gravimetrische Bestimmung der Staubbeladung

Messplatzaufbau

Rückhaltesystem für partikelförmige

Stoffe:

Entnahme direkt über Düse auf Filterkopfgerät mit Filterhalter

Entnahmesonde: 1/2" Edelstahlrohr / 0,5 m Länge Sonde: Filtergerät: Planfilterkopfgerät

Wirkdurchmesser: siehe Anhang Messbericht

Beheizung: unbeheizt Material: Titan

Absaugeinrichtung: Planfilterkopf mit Düse, Krümmer, Entnahmesonde,

Kondensatfalle, Trockenturm, Gaspumpe mit Bypassventil,

entfällt, Messanordnung gemäß Nr. 9.6.1 DIN EN 13284-1

Temperaturanzeige, Gasuhr, Durchflussmessgerät

Abscheidemedium: Quarz-Mikrofaserfilter

Hersteller / Typ: Munktell / MK 360 (getempert)

Filterdurchmesser: 45 mm Porendurchmesser: 0.3 um Abscheidegrad: 99.998 %

Aufarbeitung und Auswertung des Abscheidemediums

Transport und Lagerung: Auf Filterhaltern in geschlossenen Petrischalen 180°C

160°C

Trocknungstemperatur des Filters vor

der Beaufschlagung:

Trocknungstemperatur des Filters nach

der Beaufschlagung:

Trocknungszeit des Filters vor und nach mind, 1 h

der Beaufschlagung:

Abkühlzeit im Exsikkator: mind, 4 h

Rückgewinnung der Ablagerungen vor

dem Filter:

Behandlung der Spüllösungen: nicht zutreffend

Bestimmung von Gesamtleerproben:

Planfilter

Waage

Hersteller: Sartorius

CPA 225 D-0CE Typ:

Ablesbarkeit: 0,01 mg

Verfahrenskenngrößen

Bestimmungsgrenze: 0,4 mg/Probe

0,4 mg/m³ (bei 1,0 m³ Teilgasvolumen)

Messunsicherheit: siehe Kapitel 6.3 des Messberichtes

SGS-TÜV Saar GmbH

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 26 von 33

Maßnahmen zur Qualitätssicherung

Reinigen der Staub berührenden Teile im Ultraschallbad vor

Messdurchführung

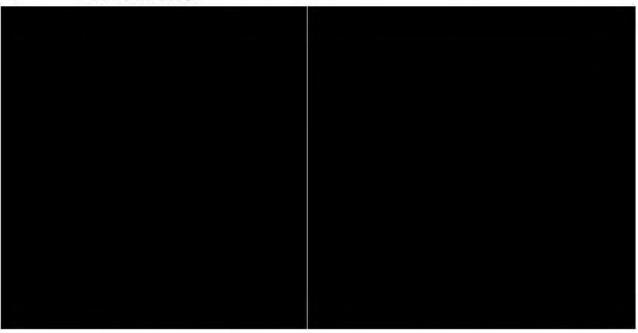
Dichtheitsprüfung: Verschließen der Entnahmesonde und Einschalten der

Absaugpumpe: Leckrate < 2% Kontrolle der Waage arbeitstäglich

Analyse: Kontrolle der Waage arbeitstäglich Bestimmung eines Feldblindwertes

4.5 Besondere hochtoxische Abgasinhaltsstoffe

Entfällt


4.6 Geruchsemissionen

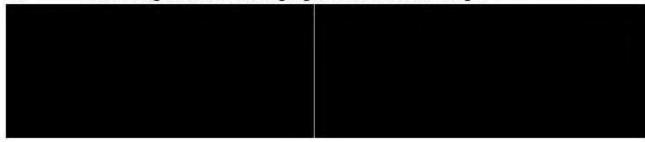
Entfällt

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 27 von 33

5. Betriebszustand der Anlage während der Messungen

5.1 Produktionsanlage

5.2 Abgasreinigungsanlage


Die entsprechenden Abgasreinigungsanlagen waren während des Beurteilungsintervalls in Betrieb. Abweichungen vom bestimmungsgemäßen Betrieb waren vor Ort nicht feststellbar.

Berichtsdatum: 14.01.2025

Seite 28 von 33

6. Zusammenstellung der Messergebnisse und Diskussion

6.1 Beurteilung der Betriebsbedingungen während der Messungen

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 29 von 33

6.2 Messergebnisse

Quelle A 015 (Raumabsaugung Keller und Vakuumpumpen)

Messkomponente:

Gesarntkohlenstoff [A 015]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
1	23.09.2024	11:27 - 11:57	<1,5	<0,0150	50	- 1-72-7
2	23.09.2024	12:00 - 12:30	<1,4	<0,0140	50	
3	23.09.2024	12:34 - 13:04	<1,3	<0,0140	50	-
Mittelwert			<1,4	<0,0143		
Maximalwert			<1,5	<0,0150	50	

Messkomponente:

Formaldehyd [A 015]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [g/h]	Emissionsh Konzentration [mg/m³]	
1	23.09.2024	11:27 - 11:57	0,11	1,2		25
2	23.09.2024	12:00 - 12:30	0,14	1,5	W	25
3	23.09.2024	12:34 - 13:04	0,14	1,5	9	25
Mittelwert			0,13	1,4		
Maximalwert			0,14	1,5		25

Messkomponente:

Ameisensäure [A 015]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsk Konzentration [mg/m³]	
1	23.09.2024	11:27 - 11:57	<0,4	<0,0042	20	_
2	23.09.2024	12:00 - 12:30	<0,4	<0,0042	20	-
3	23.09.2024	12:34 - 13:04	<0,3	<0,0039	20	-
Mittelwert			<0,4	<0,0041		
Maximalwert			<0,4	<0,0042	20	

Messkomponente:

Methanol [A 015]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsh Konzentration [mg/m³]	
1	23.09.2024	11:27 - 11:57	1,0	0,0106	20	
2	23.09.2024	12:00 - 12:30	1,5	0,0156	20	
3	23.09.2024	13:33 - 14:03	1,6	0,0167	20	- 8
Mittelwert			1,4	0,0143		
Maximalwert			1,6	0,0167	20	

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025

Seite 30 von 33

Quelle A 030 (Rührreaktor R 1100)

Messkomponente:

Gesarntkohlenstoff [A 030]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionst Konzentration [mg/m³]	
1	23.09.2024	13:27 - 13:57	58,0	0,0010	50	-7.27
2	23.09.2024	14:03 - 14:33	68,0	0,0010	50	
3	23.09.2024	14:42 - 15:12	<1,1	<0,00001	50	
Mittelwert			<42,4	<0,00067		
Maximalwert			68,0	0,0010	50	21

Messkomponente:

Formaldehyd [A 030]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [g/h]	Emissionsh Konzentration [mg/m³]	
1	23.09.2024	13:27 - 13:57	3,36	<0,1	641	25
2	23.09.2024	14:03 - 14:33	3,35	<0,1		25
3	23.09.2024	14:42 - 15:12	0,63	<0,1	9	25
Mittelwert			2,45	<0,1		
Maximalwert			3,36	<0,1		25

Messkomponente:

Ameisensäure [A 030]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionst Konzentration [mg/m³]	egrenzung Massenstrom [kg/h]
1	23.09.2024	13:37 - 14:07	<0,4	<0,0001	20	
2	23.09.2024	14:03 - 14:33	<0,3	<0,0001	20	-
3	23.09.2024	14:42 - 15:12	<0,3	<0,0001	20	-
Mittelwert			<0,3	<0,0001		
Maximalwert			<0,4	<0,0001	20	

Messkomponente:

Methanol [A 030]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsk Konzentration [mg/m³]	
1	23.09.2024	13:27 - 13:57	3,4	<0,0001	20	
2	23.09.2024	14:03 - 14:33	3,0	<0,0001	20	-
3	23.09.2024	14:42 - 15:12	0,5	<0,0001	20	-
Mittelwert			2,3	<0,0001		
Maximalwert			3,4	<0,0001	20	-

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Seite 31 von 33

Quelle A 072 (Behälter B 1200)

Messkomponente: Staub [A 072]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsk Konzentration [mg/m³]	
1	14.09.2021	15:08 - 15:28	0,4	0,0003	20	200
2	14.09.2021	15:31 - 15:51	0,4	0,0003	20	_
3	14.09.2021	15:54 - 16:14	0,2	0,0001	20	
Mittelwert			0,3	0,0002		
Maximalwert			0,4	0,0003	20	-

Quelle A 074 (Behälter B 110 und B 1220)

Messkomponente: Staub [A 074]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionst Konzentration [mg/m³]	
1	23.09.2024	11:18 - 11:48	0,5	0,0000	20	
2	23.09.2024	11:56 - 12:26	<0,4	0,0000	20	-
3	23.09.2024	12:35 - 13:05	<0,4	0,0000	20	-
4	23.09.2024	14:33 - 15:03	<0,4	0,0000	20	-
5	23.09.2024	15:12 - 15:42	<0,4	0,0000	20	-
Mittelwert			<0,4	0,0000		
Maximalwert			0,5	0,0000	20	9

Quelle A 077 (Rührreaktor R 2000 und Vakuumanlage)

Messkomponente: Gesarntkohlenstoff [A 077]

No.		Table Test - Table	N 2 1 1 2 2 2	***************	Emissionsbegrenzung	
Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]	Konzentration [mg/m³]	Massenstrom [kg/h]
1	14.09.2021	09:39 - 10:09	5,2	0,0006	50	
2	14.09.2021	10:24 - 10:54	3,8	0,0003	50	-
3	14.09.2021	11:09 - 11:39	29,9	0,0086	50	-
4	14.09.2021	12:35 - 13:05	10,3	0,0020	50	-
5	14.09.2021	14:38 - 15:08	1,1	0,00009	50	
6	14.09.2021	15:18 - 15:48	<0,7	<0,00009	50	-
Mittelwert			<8,5	<0,00195		
Maximalwert			29,9	0,0086	50	

Berichtsdatum: 14.01.2025 Seite 32 von 33

Messkomponente:

Formaldehyd [A 077]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [g/h]	Emissionsk Konzentration [mg/m³]	egrenzung Massenstrom [g/h]
1	14.09.2021	09:39 - 10:09	0,2	<0,1	1) 20/10	25
2	14.09.2021	10:24 - 10:54	0,2	<0,1	1) 20/10	25
3	14.09.2021	11:09 - 11:39	0,5	0,1	1) 20/10	25
4	14.09.2021	12:35 - 13:05	2,9	0,6	1) 20/10	25
5	14.09.2021	14:38 - 15:08	0,7	0,1	1) 20/10	25
6	14.09.2021	15:18 - 15:48	0,8	0,1	1) 20/10	25
Mittelwert			0,9	<0,2		
Maximalwert			2,9	0,6	1) 20/10	25

¹⁾ Der Grenzwert gemäß TA Luft 2021 beträgt 10 mg/m³

Messkomponente:

Ameisensäure [A 077]

Messung Nr.	Datum	Messzeitraum [Uhr]	Konzentration [mg/m³]	Massenstrom [kg/h]		egrenzung Massenstrom [kg/h]
1	14.09.2021	09:39 - 10:09	<0,3	<0,0001	20	-
2	14.09.2021	10:24 - 10:54	<0,3	<0,0001	20	-
3	14.09.2021	11:09 - 11:39	0,7	0,0002	20	
4	14.09.2021	12:35 - 13:05	0,3	0,0001	20	-
5	14.09.2021	14:38 - 15:08	<0,3	<0,0001	20	
6	14.09.2021	15:18 - 15:48	<0,3	<0,0001	20	_
Mittelwert			<0,4	<0,0001		
Maximalwert			0,7	0,0002	20	

Messkomponente:

Methanol [A 077]

Messung Nr.	Messzeitraum Datum [Uhr]		Konzentration [mg/m³]	Massenstrom [kg/h]	Emissionsbegrenzung Konzentration Massenstro [mg/m³] [kg/h]	
1	14.09.2021	09:39 - 10:09	<0,1	<0,0001	20	-
2	14.09.2021	10:24 - 10:54	<0,1	<0,0001	20	
3	14.09.2021	11:09 - 11:39	1,0	0,0003	20	
4	14.09.2021	12:35 - 13:05	0,1	<0,0001	20	-
5	14.09.2021	14:38 - 15:08	<0,1	<0,0001	20	-
6	14.09.2021	15:18 - 15:48	<0,1	<0,0001	20	4-1-4
Mittelwert			<0,3	<0,0001		
Maximalwert			1,0	0,0003	20	

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K)

Berichtsdatum: 14.01.2025 Seite 33 von 33

6.3 Messunsicherheiten

Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A 015	Gesamtkohlenstoff	mg/m³	<1,5	2,56	0,0	<4	indirekter Ansatz
A 015	Formaldehyd	mg/m³	0,1	0,01	0,1	0,1	indirekter Ansatz
A 015	Ameisensäure	mg/m³	<0,4	0,04	<0,4	<0,4	indirekter Ansatz
A 015	Methanol	mg/m³	1,6	0,16	1	2	indirekter Ansatz
A 030	Gesamtkohlenstoff	mg/m³	68,0	2,96	65	71	indirekter Ansatz
A 030	Formaldehyd	mg/m³	3,3	0,33	3	4	indirekter Ansatz
A 030	Ameisensäure	mg/m³	<0,4	0,04	<0,4	<0,4	indirekter Ansatz
A 030	Methanol	mg/m³	3,4	0,32	3	4	indirekter Ansatz
A 074	Staub	mg/m³	0,5	0,084	0,4	1	indirekter Ansatz

Emissions- quelle	Messkomponente	Einheit	Maximalwert Y _{max}	erweiterte Messun- sicherheit (U _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Bestimmungs- methode
A 077	Gesamtkohlenstoff	mg/m³	29,9	2,66	27	33	indirekter Ansatz
A 077	Formaldehyd	mg/m³	2,9	0,17	3	3	indirekter Ansatz
A 077	Ameisensäure	mg/m³	0,7	0,07	1	1	indirekter Ansatz
A 077	Methanol	mg/m³	1,0	0,1	1	1	indirekter Ansatz
A 072	Staub	mg/m³	0,4	0,01	0,4	0,4	indirekter Ansatz

Die Konzentrationsangaben beziehen sich auf trockenes Abgas im Normzustand (1013 hPa, 273 K)

6.4 Diskussion der Ergebnisse

Die Plausibilitätsprüfung der Messergebnisse in Hinblick auf die Anlagenauslastung während des Messzeitraums, erfolgte durch Kontrolle der Produktionsabläufe und der im Leitstand angezeigten Betriebsparameter und ergab keine Abweichung von der bestimmungsgemäßen Betriebsführung der Anlage. Unter Berücksichtigung der Anlagenauslastung während der Messungen ergeben sich durch den Vergleich der Messergebnisse miteinander und der Betriebsweise der Anlage keinerlei Unstimmigkeiten. Die ermittelten Messergebnisse erscheinen im Hinblick auf die Betriebsbedingungen während des Messzeitraums und die Bedingungen der Probenahme als plausibel.

Frankfurt, den 14.01.2025

Stellv, fachlich Verantwortlicher Sachverständige

7. Anhang

7.1 Mess- und Rechenwerte

7.1.1 Quelle A 015 (Raumabsaugung Keller und Vakuumpumpen)

	aggeb			20								
		mmer 652							-			
900	je:	_	rit-Lei	m					+			
	ort:	A 0	15	9					-			
	bearb	eiteri				ASS 13	_	Version Conc.				
ess	stag:	_	23.09	.2024		Uhrzeit	von	11:20 bis	11:25	Me	ssung Nr.	1_
		smessger	ät				Achser	anordnung		Kanalabme		
	Staur aktor		Nr.				/			a (D)= b =	620	mm mm
F	200-040	1,000 lometer	INI.				1 5			A =	0.30191	- F C C C C C C C.
	Anen	ometer) b		Wandstärke =	0,30 19 1	mm
nte	ilung	Messnetz					1		а		W. C.	1,000
		chsen 2					etersta			Messstelle	nbeschrei	
An	zahl P	unkte 2	1			b ₀ =	999	hPa		Höhe Quelle =		m
_			Laire	1000000	_		-			Fläche Quelle =		m²
3	140	Eintauch-	Diffe	renzd	ruck	Stat.	Tempe-	Strömungs-	MO	Lage Kanal =		
20130	MP	tiefe		[Pa]		Druck	ratur	geschw.	MP	Hôhe Messst. =		m
_	1	[mm]	M 1	M 2	M 3		[°C]	[m/s] 11,3131	-	Einlaufstr. =		m
	2	91 529	95			0,01	21,0	12,7325	X	Auslaufstr. =	_	m Stk
	1	91	52				9	9,42	x	Zahl Messöff. = Maß Messöff. =		4-2 Capital
	2	529	35					7,7283	X	IVIAIS IVIESSOII		mm
	2	323	55			-		1,1203	V	Feuchte		
										2-Thermome	etermetho	le
										Temperatur trocken =	- 1 - C - C - F - F	°C
										Temperatur feucht =		°C
										Sale and a contract of		
										- India Province	04.00	nr
										relative Feuchte =	61,08	
-					-	-	-			absolute Feuchte =		kg/m³ i.N. Vol. %
	3					-	-		-	Feuchte =	1,52	VOI. %
	-											
										4		
										<u>Dichte</u>		66.700
	F 1						-		J	O ₂ =		Vol-%
										CO ₂ =		Vol-%
									N == 1	Rest =	79,07	
										Dichte Betrieb =	1,1/2	kg/m³
				-5						Laura Sell Te		
										Mittelwerte		hDo
							4			p _{stat} = t _{tr} =		hPa °C
										w = Verhältnis w _{max} /w _{min}	10,2985 1,6 / 1	m/s
									-4	Section 2		
										<u>Volumenstr</u>	the second second second	3/b
			-				4			Betrieb =	11193	
-						-	-		-	Norm, feucht = Norm, trocken =	10250 10094	
	-						1 6		-	iyoni, docken –	10094	111-111
	-						-		-	Sondengröße		
										Absaugerate	2,8	m³/h
	-								-	berechnet	8,82	mm
											0.02	

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 2 von 19

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF SE

Berichtsnummer: 5625528.21

Anlage: Kaurit Leim -F

Messort: A 015

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-022

Messung-Nr.		1	2	3		
Datum		23.09.24	23.09.24	23.09.24		
Uhrzeit		11:27 - 11:57	12:00 - 12:30	12:34 - 13:04		
Barometerstand	[hPa]	999	999	999		
Feuchte Abgas	[Vol-%]	1,52	1,52	1,52		
Abgasreinigung vorhanden	e description of the second of	Nein	Nein	Nein		
Volumenstrom im Normzustand	[m³/h]	10.094	10.094	10.094		

Ergebnisse

Messwert	[mg/m³]	< 1,6	< 1,6	< 1,6	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	< 1,5	< 1,4	< 1,3	
Massenstrom	[kg/h]	< 0,015	< 0,014	< 0,014	
Gesamtmessunsicherheit	[mg/m³N,tr]	2,56	2,56	2,56	

Bewertung der Drit	Werte wurden korrigiert		
Drift max. abs. [%]			0,44
Messende	Endpunkt	15:16	147,80
Ablesewert nach	Nullpunkt	23.09.24	0,64
Messbeginn	Endpunkt	10:50	147,15
Einstellwert vor	Nullpunkt	23.09.24	0,00

Eingesetztes Prüfgas Propan berechnet als Cges.								
Prüfgaskor	nzentration	Flaschen-	Haltbar					
Sollwert	Einheit	nummer	bis					
147,154	mg/m³	M905983	02 / 2025					

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 3 von 19

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

BASF SE Auftraggeber:

5625528.21 Auftragsnummer:

Kaurit Leim Fabrik Anlage:

A 015 Messort:

Formaldehyd Messkomponente:

Bearbeiter:

PM-Nr. der Gasuhr:	541-21-019			ý-	
Messung-Nr.		1	2	3	
Datum		23.09.2024	23.09.2024	23.09.2024	
Uhrzeit		11:27 - 11:57	12:00 - 12:30	12:34 - 13:04	
Barometerstand	[hPa]	999	999	999	
Zählerstand Anfang	[m³]	3,6282	3,7054	3,7836	- 32
Zählerstand Ende	[m³]	3,7051	3,7834	3,8682	
Abgesaugtes Volumen	[m³]	0,077	0,078	0,085	
Temperatur an der Uhr	[°C]	30	33	33	
Sondentemperatur	[°C]	40	40	40	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	
Probenbezeichnung		15201	15202	15203	
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja	
Normvolumen	[m³]	0,069	0,069	0,075	
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	
Bezugssauerstoffgehalt	[Vol-%]				
Volumenstrom im Normzustand	[m³/h]	10.094	10.094	10.094	
Analysenergebnis	[mg/Probe]	0,008	0,010	0,011	
Konzentration	[mg/m³]	0,116	0,145	0,147	
Konzentration O ₂ -Bez.	[mg/m³]	0.00		*	
Massenstrom	[kg/h]	0,0012	0,0015	0,0015	
Gesamtmessunsicherheit	[mg/m³]	0,01	0,01	0,01	
Blindwert					
Probenbezeichnung		1520	-		
mittleres Normvolumen	[m³]	0,071			
Analysenwert	[mg]	< 0,002			
Analysenwert	[mg/m³]	< 0,028	0	0 0	

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 4 von 19

Diskontinuierliche Probenahme und Auswertung bezüglich Ameisensäure

Auftraggeber: BASF SE

Auftragsnummer: 5625528.21

Anlage: Kaurit Leim Fabrik

Messort: A 015

Messkomponente: Ameisensäure

Bearbeiter: 541.21.018

PM-Nr. der Gasuhr:	541-21-018					
Messung-Nr.		1	2	3	1)	
Datum		23.09.2024	23.09.2024	23.09.2024		
Uhrzeit		11:27 - 11:57	12:00 - 12:30	12:34 - 13:04		
Barometerstand	[hPa]	999	999	999	j);	
Zählerstand Anfang	[m³]	4,2768	4,3036	4,3308		
Zählerstand Ende	[m³]	4,3034	4,3305	4,3597		
Abgesaugtes Volumen	[m³]	0,027	0,027	0,029		
Temperatur an der Uhr	[°C]	30	32	32		
Sondentemperatur	[°C]	40	40	40		
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1	
Probenbezeichnung		15301	15302	15303		
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja		
Normvolumen	[m³]	0,024	0,024	0,026		
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]	9-	- 9	9 9		
Volumenstrom im Normzustand	[m³/h]	10.094	10.094	10.094		
Analysenergebnis	[mg/Probe]	< 0,010	< 0,010	< 0,010	10	
Konzentration	[mg/m³]	< 0,417	< 0,417	< 0,385		
Konzentration O ₂ -Bez.	[mg/m³]	9	9	1- e 1		
Massenstrom	[kg/h]	< 0,0042	< 0,0042	< 0,0039		
Gesamtmessunsicherheit	[mg/m³]	0,04	0,04	0,04		
Blindwert						
Probenbezeichnung	c	1530	- 2		1	
mittleres Normvolumen	[m³]	0,025				
Analysenwert	[mg]	< 0,01	-1			
Analysenwert	[mg/m³]	< 0,405			11	

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 5 von 19

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

Auftraggeber: BASF SE

 Auftragsnummer:
 5625528.21

 Anlage:
 Kaurit Leim Fabrik

Messort: A 015

Messkomponente: Methanol

Bearbeiter:

PM-Nr. der Gasuhr: 541-21-014

PM-Nr. der Gasuhr:	541-21-014					
Messung-Nr.		1	2	3		
Datum		23.09.2024	23.09.2024	23.09.2024		
Uhrzeit		11:27 - 11:57	12:00 - 12:30	13:33 - 14:03		
Barometerstand	[hPa]	999	999	999	Į.	
Zählerstand Anfang	[m³]	6,0382	6,0628	6,0879		
Zählerstand Ende	[m³]	6,0626	6,0877	6,1152	1	
Abgesaugtes Volumen	[m³]	0,024	0,025	0,027		
Temperatur an der Uhr	[°C]	31	40	41		
Sondentemperatur	[°C]	40	40	40		
Korrekturfaktor Gasuhr		1,000	1,000	1,000		
Probenbezeichnung		15101	15102	15103		
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja		
Normvolumen	[m³]	0,021	0,022	0,023		
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]			1 12		
Volumenstrom im Normzustand	[m³/h]	10.094	10.094	10.094		
Analysenergebnis	[mg/Probe]	0,022	0,034	0,038		
Konzentration	[mg/m³]	1,048	1,545	1,652		
Konzentration O ₂ -Bez.	[mg/m³]	-5-	100			1
Massenstrom	[kg/h]	0,0106	0,0156	0,0167		
Gesamtmessunsicherheit	[mg/m³]	0,10	0,15	0,16		
Blindwert						
Probenbezeichnung		1510	11 11 11			
mittleres Normvolumen	[m³]	0,022				
Analysenwert	[mg]	< 0,005	100			
Analysenwert	[mg/m³]	< 0,227	7 6 1	1		1 -

Berichtsdatum: 14.01.2025

Anhang Seite 6 von 19

7.1.2 Quelle A 030 (Rührreaktor R 1100)

uftra	aggeb	er: BAS	F SE								
uftra	agsnui	mmer 5625	5528.2	20							
nlag	je:	Kau	rit Leii	m Fabrik							
ess	ort:	A 03	10								
ach	bearb	eiter:									
ess	tag:	0.00	23.09	9.2024	Uhrzeit	von	13:20 bis	13:25	Me	ssung Nr	1
	nungs Staur	messgeri ohr	<u>it</u>			Achsen	anordnung		Kanalabme a (D)=	ssungen 100 mi	n
F	aktor					1	7 17		b=	mı	
(Anem	ometer				(<u>5</u>) b		A =	0,008 m ²	2
nte	ilung	Messnetz				X		a	Wandstärke =	mı	n
Anz	ahl Ac	hsen 1				eterstar			Messstelle Höhe Quelle =	nbeschreibu	ng
An.	zahl P	unkte 1			p ⁰ =	999	hPa		and the second s	m	
	_	Cintarial	Diff.	a a made vale	Ctat	Tanana	Ct-s		Fläche Quelle =	m²	
201101	MP	Eintauch- tiefe	DITTE	erenzdruck	Stat.	Tempe- ratur		MP	Lage Kanal = Höhe Messst. =	lm	
į	IVIP		NA a	[Pa]	Druck		geschw.	IVIP	200 Park 1 25 April 1 20 April 1	71.70	
_	4	[mm]	IVI 1	M2 M3		[°C]	[m/s]		Einlaufstr. =	m	
١	1	50		111111	-0,03	20,9	0,4	Х	Auslaufstr. =	m	
-									Zahl Messöff. =	St	
							-		Maß Messöff. =	mı	n
									Feuchte 2-Thermome	atormothodo	
-	-								Temperatur trocken =	21 °C	
-	-				-		-		Temperatur focken = Temperatur feucht =	20 °C	
							7.5		remperatur reucht = [20 C	
									relative Feuchte =	01 61 9/	
-				-			V		absolute Feuchte =	91,61 %	/mm3 : A1
										0,02 kg	
									Feuchte =	2,29 Vo	01. %
									Dichte		
									O ₂ =	20,9 Vc	
									CO ₂ =	0,04 Vo	1-%
				100					Rest =	79,06 %	
									Dichte Betrieb =	1,16865 kg	/m³
									<u>Mittelwerte</u>	12.62	
			100						p _{stat} =	0 hP	
					7				t _{tr} =	21 °C	
						1			w=	0,4 m/	S
1									Verhältnis w _{max} /w _{min}		
					1 4				Volumenstr		
				100	-				Betrieb =	12 m ³	
					7		·		Norm, feucht =	11 m ³	
									Norm, trocken =	11 m ²	/h
									Sondengröße		
J					(T. 1)				Absaugerate	2,8 m ³	/h
					-				berechnet	49,76 mr	n
				konstante							

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 7 von 19

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF SE

Berichtsnummer: 5625528.21
Anlage: Kaurit Leim -F

Messort: A 030

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-022

Messung-Nr.		1	2	3		
Datum		23.09.24	23.09.24	23.09.24		
Uhrzeit		13:27 - 13:57	14:03 - 14:33	14:42 - 15:12		
Barometerstand	[hPa]	999	999	999		
Feuchte Abgas	[Vol-%]	2,30	2,30	2,30		
Abgasreinigung vorhanden		Nein	Nein	Nein		
Volumenstrom im Normzustand	[m³/h]	11	11	11		

Ergebnisse

Messwert	[mg/m³]	57,1	67,0	< 1,7	
Konzentration Drift korr.	[mg/m³ _{N,tr}]	58,0	68,1	< 1,1	
Massenstrom	[kg/h]	0,001	0,001	< 0,000	
Gesamtmessunsicherheit	[mg/m³N,tr]	2,88	2,96	2,58	

Bewertung der Drit	rt -		Werte wurden korrigiert
Drift max. abs. [%]			0,44
Messende	Endpunkt	15:16	147,80
Ablesewert nach	Nullpunkt	23.09.24	0,64
Messbeginn	Endpunkt	10:50	147,15
Einstellwert vor	Nullpunkt	23.09.24	0,00

		tes Prüfgas chnet als Cges.					
Prüfgaskonzentration Flaschen- Haltba							
Sollwert	Einheit	nummer	bis				
147,154	mg/m³	M905983	02 / 2025				

Berichtsdatum: 14.01.2025

Anhang Seite 8 von 19

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

BASF SE Auftraggeber: 5625528.21 Auftragsnummer: Kaurit Leim Fabrik Anlage: Messort: A 030 Formaldehyd Messkomponente: Bearbeiter:

PM-Nr. der Gasuhr:	541-21-019					
Messung-Nr.		1	2	3		(Million
Datum		23.09.2024	23.09.2024	23.09.2024		
Uhrzeit		13:27 - 13:57	14:03 - 14:33	14:42 - 15:12		
Barometerstand	[hPa]	999	999	999		
Zählerstand Anfang	[m³]	3,8686	3,9511	4,0343		
Zählerstand Ende	[m³]	3,9510	4,0341	4,1185		
Abgesaugtes Volumen	[m³]	0,082	0,083	0,084		
Temperatur an der Uhr	[°C]	32	32	33		
Sondentemperatur	[°C]	40	40	40		
Korrekturfaktor Gasuhr		1,000	1,000	1,000		
Probenbezeichnung		3021	3022	3023		
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja		
Normvolumen	[m³]	0,072	0,073	0,074	i i	
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]	6	è	-		
Volumenstrom im Normzustand	[m³/h]	11	11	11		
Analysenergebnis	[mg/Probe]	0,242	0,245	0,047		
Konzentration	[mg/m³]	3,361	3,356	0,635		
Konzentration O ₂ -Bez.	[mg/m³]		1 PEL 10	T- 1		
Massenstrom	[kg/h]	< 0,0001	< 0,0001	< 0,0001		
Gesamtmessunsicherheit	[mg/m³]	0,33	0,32	0,06		1
Blindwert						
Probenbezeichnung		3020				
mittleres Normvolumen	[m³]	0,073		4		
Analysenwert	[mg]	< 0,002		1 2		
Lancia de Caración de la Caración de Carac	History Section					14 4

Die angegebenen Konzentrationen beziehen sich auf trockenes Abgas im Normzustand (273 K; 1013 hPa)

< 0,027

[mg/m³]

Analysenwert

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 9 von 19

Diskontinuierliche Probenahme und Auswertung bezüglich Ameisensäure

Auftraggeber: BASF SE

Auftragsnummer: 5625528.21

Anlage: Kaurit Leim Fabrik

Messort: A 030

Messkomponente: Ameisensäure

Bearbeiter:

PM-Nr. der Gasuhr:	541-21-018				
Messung-Nr.		1	2	3	
Datum		23.09.2024	23.09.2024	23.09.2024	
Uhrzeit		13:37 - 14:07	14:03 - 14:33	14:42 - 15:12	
Barometerstand	[hPa]	999	999	999	
Zählerstand Anfang	[m³]	4,3600	4,3883	4,4172	
Zählerstand Ende	[m³]	4,3880	4,4170	4,4462	
Abgesaugtes Volumen	[m³]	0,028	0,029	0,029	
Temperatur an der Uhr	[°C]	31	33	33	
Sondentemperatur	[°C]	40	40	40	
Korrekturfaktor Gasuhr		1,000	1,000	1,000	
Probenbezeichnung		3031	3032	3033	
Dichtigkeitsprüfung durchg	eführt	ja	ja	ja	
Normvolumen	[m³]	0,025	0,026	0,026	
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90	
Bezugssauerstoffgehalt	[Vol-%]	78	19.00		
Volumenstrom im Normzustand	[m³/h]	11	11	11	
Analysenergebnis	[mg/Probe]	< 0,010	< 0,010	< 0,010	
Konzentration	[mg/m³]	< 0,400	< 0,385	< 0,385	
Konzentration O ₂ -Bez.	[mg/m³]		-	1 (-	
Massenstrom	[kg/h]	< 0,0001	< 0,0001	< 0,0001	
Gesamtmessunsicherheit	[mg/m³]	0,04	0,04	0,04	
Blindwert					
Probenbezeichnung		3030	3		
mittleres Normvolumen	[m³]	0,026		7	
Analysenwert	[mg]	< 0,01			
Analysenwert	[mg/m³]	< 0,390	14	1 2 1	

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 10 von 19

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

Auftraggeber: BASF SE

Auftragsnummer: 5625528.21

Anlage: Kaurit Leim Fabrik

Messort: A 030

Messkomponente: Methanol

Bearbeiter:

Bearbeiter: PM-Nr. der Gasuhr:	541-21-014	XI	-0			
Messung-Nr.		1	2	3		
Datum		23.09.2024	23.09.2024	23.09.2024		
Uhrzeit		13:27 - 13:57	14:03 - 14:33	14:42 - 15:12		
Barometerstand	[hPa]	999	999	999		
Zählerstand Anfang	[m³]	6,1155	6,1413	6,1679		
Zählerstand Ende	[m³]	6,1410	6,1677	6,1932		
Abgesaugtes Volumen	[m³]	0,026	0,026	0,025		
Temperatur an der Uhr	[°C]	40	41	43		
Sondentemperatur	[°C]	40	40	40		
Korrekturfaktor Gasuhr		1,000	1,000	1,000		
Probenbezeichnung		30101	30102	30103		
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	- 1	
Normvolumen	[m³]	0,022	0,022	0,021		
Sauerstoffgehalt	[Vol-%]	20,90	20,90	20,90		
Bezugssauerstoffgehalt	[Vol-%]			-		
Volumenstrom im Normzustand	[m³/h]	11	11	11		
Analysenergebnis	[mg/Probe]	0,075	0,067	0,012		
Konzentration	[mg/m³]	3,409	3,045	0,571		
Konzentration O ₂ -Bez.	[mg/m³]	- 6	-	1.76		
Massenstrom	[kg/h]	< 0,0001	< 0,0001	< 0,0001		
Gesamtmessunsicherheit	[mg/m³]	0,32	0,29	0,05		
Blindwert						
Probenbezeichnung	11	3010				
mittleres Normvolumen	[m³]	0,022				
Analysenwert	[mg]	< 0,005	-	- 5		
Analysenwert	[mg/m³]	< 0,231				

Berichtsdatum: 14.01.2025

Anhang Seite 11 von 19

7.1.3 Quelle A 072 (Behälter B 1200)

	49900	er: BAS	t .						
uftra	agsnu	mmer: 6525	5528.20						
nlag	je:	Kau	rit-Leim			3,6			
less	ort:	A 07	2						
ach	bearb	eiter:							
less	tag:		14.09.2021	Uhrzeit	von	9:28 bis	9:36	Me	ssung Nr. 1
х	Staur		la de la company		Achser	anordnung		Kanalabmes a (D)=	200 mm
_	aktor	1,000	Nr. 541-99-0	31	1	A	7.7	b =	mm
	Anem	nometer			() b		A = _ Wandstärke =	0,03142 m² mm
	C-100-0	Messnetz chsen 1	1	Barom	etersta	nd	а	Messsteller	beschreibung
		unkte 1		b ₀ =		hPa		Höhe Quelle =	m
		3003221-0						Fläche Quelle =	m²
0		Eintauch-	Differenzdrud	ck Stat.	Tempe-	Strömungs-	-	Lage Kanal =	*
Achse	MP	tiefe	[Pa]	Druck	ratur	geschw.	MP	Höhe Messst. =	m
Ĭ		[mm]	M 1 M 2 M	3 [hPa]	[°C]	[m/s]		Einlaufstr. =	m
1	-1	100	23	0,31	31,4	6,3556	Х	Auslaufstr. =	m
				7.25			100	Zahl Messöff. =	Stk
4								Maß Messöff. =	mm
								<u>Feuchte</u>	
								2-Thermome	
- (1	100	_	1 - 1 X 1 }-	-1 2-3			W. 34	Temperatur trocken =	31 °C
								Temperatur feucht =	15,8 °C
-									
								relative Feuchte =	19,67 %
_						,,	100	absolute Feuchte =	0,0072 kg/m³ i.N.t
								Feuchte =	0,88 Vol. %
								Dichte	
=								O ₂ =	20,9 Vol-%
_						* 		CO ₂ =	0,03 Vol-%
						-	-	Rest =	79,07 %
								Dichte Betrieb =	1,1388 kg/m³
					-	-			
			111111111111				4	Mittelwerte	10.00
			1-11-11					p _{stat} =	0,3 hPa
								t _{tr} =	31 °C
								w = Verhältnis w _{max} /w _{min}	6,3556 m/s
							1	· max · min	
=!							23	Volumenstr	
			P. T. AT GI				Y Y	Betrieb =	719 m³/h
= 17	1						immi	Norm, feucht =	638 m³/h
								Norm, trocken =	632 m³/h
								Sondengröße	
	- 4							Absaugerate	2,8 m³/h
_								berechnet	12,48 mm
		120	endenkonstant					gewählt	11 mm

SGS-TÜV Saar GmbH

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 12 von 19

Auftraggeber: BASF
Auftragsnummer: 6525528.20
Anlage: Kaurit-Leim
Messort: A 072
Messkomponente: Staub
PM-Nr. der Gasuhr: 541-21-010

Messung-Nr.		1	2	3
Datum		14.09.2021	14.09.2021	14.09.2021
Uhrzeit		15:08 - 15:28	15:31 - 15:51	15:54 - 16:14
Barometerstand	[hPa]	1001	1001	1001
Probenahmevolumen	[m³]	0,8890	0,8860	0,8890
Temperatur an der Uhr	[°C]	2:3,0	23,5	24,0
Druck an der Uhr	[hPa]	0,0	0,0	0,0
Normvolumen	[m³]	0,8102	0,8061	0,8075
Probenbezeichnung		454	456	457
Bezugssauerstoffgehalt	[Vol-%]			
Sauerstoffgehalt	[Vol-%]	2:0,9	20,9	20,9
Messunsicherheit Sauerstoff	[Vol-%]			
Statischer Druck im Abgaskanal	[hPa]	0,3	0,3	0,3
Abgastemperatur	[°C]	31	31	31
Abgasfeuchte	[Vol-%]	0,88	0,88	0,88
Mittlere Abgasgeschwindigkeit	[m/s]	6,3556	6,3556	6,3556
Fläche Messquerschnitt	[m²]	0,03142	0,03142	0,03142
Volumenstrom im Normzustand bezogen auf trockenes Abgas	[m³/h]	632	632	632
Durchmesser Düse	[mm]	11	11	11
Mittlere Temperatur nach Sonde	[°C]	2:0,0	20,0	20,0
Mittlere isokinetische Abweichung	[%]	2:7,1	26,5	26,6
Dichtigkeitsprüfung durchgeführt		ja	ja	ja

Ergebnisse

Analysenergebnis	[mg/Probe]	0,3	0,3	0,2
relative Standardabweichung		0,001	0,001	0,001
Konzentration im Betriebszustand	[mg/m³]	0,4	0,4	0,2
Konzentration bezogen auf feuchtes Abgas im Normzustand	[mg/m³]	0,4	0,4	0,2
Konzentration bezogen auf trockenes Abgas im Normzustand	[mg/m³]	0,4	0,4	0,2
Konzentration bezogen auf trockenes Abgas im Normzustand und den Bezugssauerstoffgehalt	[mg/m³]			
Messunsicherheit	[mg/m³]	0,010	0,010	0,005
Massenstrom	[kg/h]	0,0003	0,0003	0,0001

Blindwert Probenbezeichnung: 458

Analysenergebnis: <0,2 mg

mittl. Normvol. [m3] = 0,8079

Konz: < 0,2 mg/m³

Berichtsdatum: 14.01.2025

Anhang Seite 13 von 19

7.1.4 Quelle A 074 (Behälter B 110 und B 1220)

	32.20		F SE	2.							
		mmer: 562	370	4 1	E.						
Anlag		1	rit-Lei	m A0	174						
less	ort:	A07	4								
Sach	bearbe	eiter:									
less	stag:		23.09	9.202	4	Uhrzeit	von	11:00 bis	11:10	Me	essung Nr. 1
							A-b			Vanalahara	
	Stauro	messger	at T				Acnsen	anordnung		<u>Kanalabme</u> a (D)=	160 mm
	aktor		Nr.	99	-032		1	7 -		a (D)-	mm
	R. VALLEY TO	ometer	1	1917	1200		€ D			Ä=	0,02 m²
=		7						1 6		Wandstärke =	mm
		Messnetz					-		а		1 10 10 10 10 10 10 10 10 10 10 10 10 10
	zahl Ac						eterstar				nbeschreibung
An	zahl Pı	unkte 1				b ₀ =	999	hPa		Höhe Quelle =	m
574		Cintough	Diff	oron 7	devok	C4-4	7	Ctrömumas		Fläche Quelle =	m²
Achse	MP	Eintauch- tiefe	Dine	[Pa]	druck	Stat. Druck	Tempe- ratur	Strömungs- geschw.	MP	Lage Kanal = \ Höhe Messst. =	т
Act	IVIE	[mm]	M 1		МЗ		[°C]	[m/s]	IVIE	Einlaufstr. =	m
1A	1	80	7	IVI Z	IVI S	0.25	20.0	3,44	х	Auslaufstr. =	m
						0,20	20,0	0,11	~	Zahl Messöff. =	Stk
										Maß Messöff. =	mm
										STUDENCE TE	
			ĮΕ	TE		ļ =='				<u>Feuchte</u>	
											etermethode
										Temperatur trocken =	20 °C
	_		1 = 1							Temperatur feucht =	5,9 °C
	-	_			-	-	-				
	-			+	1		-			relative Feuchte =	3,6 %
-	-		+-		1	-		-X		absolute Feuchte =	0 kg/m³ i.N.tr
								***		Feuchte =	0,08 Vol. %
										o votacion	
			16	TI.	3 = (
			DE:	hii				· ·		Local	
			-	-					-	Dichte O ₂ =	20,9 Vol-%
-	-		-		-		-			CO ₂ =	0,04 Vol-%
										Rest =	79,06 %
							-			Dichte Betrieb =	1,18282 kg/m³
								-		- E. W. 1337 Oct. 2013-00-7	
- 1			TE	J.							
			μE							Mittelwerte	200
										p _{stat} =	0,3 hPa
				3 =		1 = 1				t _{tr} =	20 °C
								-		w = Verhältnis w _{max} /w _{min}	3,44 m/s
					+ -		- 9			TOTAL TOTAL TOTAL	
										Volumenst	röme
										Betrieb =	248 m³/h
			3 = 1	75		1, === 1				Norm, feucht =	228 m³/h
				71						Norm, trocken =	228 m³/h
) E							AND A SEC.	
				1						Sondengröße	0.0
			5			Ja				Absaugerate	2,8 m³/h
				dea -	tante	_	- 1			berechnet gewählt	16,97 mm 15 mm
		Hill	JULIAN T	DCD DC							

SGS-TÜV Saar GmbH

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 14 von 19

Auftraggeber: BASF SE
Auftragsnummer: 5625528.21

Anlage: Kaurit-Leim A074

Messort: A074

Messkomponente: Staub

PM-Nr. der Gasuhr: 20313263

Messung-Nr.		1	2	3	4	5
Datum		23.09.2024	23.09.2024	23.09.2024	23.09.2024	23.09.2024
Uhrzeit		11:18 - 11:48	11:56 - 12:26	12:35 - 13:05	14:33 - 15:03	15:12 - 15:42
Barometerstand	[hPa]	999	999	999	999	999
Probenahmevolumen	[m³]	1,109	1,116	1,120	1,119	1,121
Temperatur an der Uhr	[°C]	23,3	25,0	27,5	26,5	26,0
Druck an der Uhr	[hPa]	0,0	0,0	0,0	0,0	0,0
Normvolumen	[m³]	1,008	1,008	1,003	1,006	1,009
Probenbezeichnung		24-778	24-779	24-780	24-781	24-782
Bezugssauerstoffgehalt	[Vol-%]	4				
Sauerstoffgehalt	[Vol-%]	:20,9	20,9	20,9	20,9	20,9
Messunsicherheit Sauerstoff	[Vol-%]					
Statischer Druck im Abgaskanal	[hPa]	0,3	0,3	0,3	0,3	0,3
Abgastemperatur	[°C]	20	20	20	20	20
Abgasfeuchte	[Vol-%]	0,08	0,08	0,08	0,08	0,08
Mittlere Abgasgeschwindigkeit	[m/s]	3,44	3,44	3,44	3,44	3,44
Fläche Messquerschnitt	[m²]	0,020	0,020	0,020	0,020	0,020
Volumenstrom im Normzustand bezogen auf trockenes Abgas	[m³/h]	228	228	228	228	228
Durchmesser Düse	[mm]	15	15	15	15	15
Mittlere Temperatur nach Sonde	[°C]	:20,0	20,0	20,0	20,0	20,0
Mittlere isokinetische Abweichung	[%]	0,2	0,4	-0,1	0,1	0,5
Dichtigkeitsprüfung durchgeführt		ja	ja	ja	ja	ja

Ergebnisse

Analysenergebnis	[mg/Probe]	0,5	<0,4	<0,4	<0,4	<0,4
relative Standardabweichung		0,168	0,168	0,168	0,168	0,168
Konzentration im Betriebszustand	[mg/m³]	0,5	< 0,4	< 0,4	< 0,4	< 0,4
Konzentration bezogen auf feuchtes Abgas im Normzustand	[mg/m³]	0,5	< 0,4	< 0,4	< 0,4	< 0,4
Konzentration bezogen auf trockenes Abgas im Normzustand	[mg/m³]	0,5	< 0,4	< 0,4	< 0,4	< 0,4
Konzentration bezogen auf trockenes Abgas im Normzustand und den Bezugssauerstoffgehalt	[mg/m³]					
Messunsicherheit	[mg/m³]	0,084	0,067	0,067	0,067	0,067
Massenstrom	[kg/h]	0,000	< 0,000	< 0,000	< 0,000	< 0,000

Blindwert Probenbe

Probenbezeichnung: 24-777

Analysenergebnis: <0,4 mg

mittl. Normvol. [m³] = 1,007

Konz: < 0,4 mg/m³

Berichtsdatum: 14.01.2025

Anhang Seite 15 von 19

7.1.5 Quelle A 077 (Rührreaktor R 2000 und Vakuumanlage)

	aggel						A.				
Auftr	agsnu	ımmer: 6525	528.2	20							
Anla	ge:	Kaur	it-Lei	m							
Mess	sort:	A 07	7								
Sach	bearb	eiter:									
Mess	stag:		14.09	.2021	Uhrzeit	von	9:25 bis	9:30	Me	ssung Nr.	1
Strö	mung	smessgerä	it			Achsen	anordnung		Kanalabmes	sungen	
	Stau					_	-		a (D)=		mm
F		1,000	Nr.	7		1	A L	7 7	b=		mm
	Anen	nometer				4) b		A=_	0,0095	m²
Einte	eilunc	Messnetz				X		а	Wandstärke =		mm
Ana	zahl A	chsen 1			Barom	eterstar	nd		Messsteller	ibeschrei	bung
An	zahl F	Punkte 1			b ₀ =	1001	hPa		Höhe Quelle =	2 2 1 1	m
									Fläche Quelle =		m²
Achse	4.77	Eintauch-	Diffe	erenzdruck	Stat.	Tempe-		200	Lage Kanal =		
S	MP	tiefe	La 3	[Pa]	Druck	ratur	geschw.	MP	Höhe Messst. =		m
		[mm]		M2 M3		[°C]	[m/s]		Einlaufstr. =		m
1	1	55	14		0,01	29,0	4,9697	X	Auslaufstr. =		m
									Zahl Messöff. =		Stk
									Maß Messöff. =		mm
									<u>Feuchte</u>		
									2-Thermome		
									Temperatur trocken =	29	
									Temperatur feucht =	28	°C
	3								and the second	00.07	
									relative Feuchte =	92,87	
								_	absolute Feuchte =		kg/m³ i.N.tr.
-	-		_						Feuchte =	3,73	Vol. %
-	-		-								
								- 1	2500		
									Dichte	00.0	11 /-1 0/
									O ₂ =	D. U. S. L.I.	Vol-%
									CO ₂ =		Vol-%
									Rest =	79,07	
	=								Dichte Betrieb =	1,13368	kg/m³
									77.74		
									<u>Mittelwerte</u>	- 2	Val.
									p _{stat} =		hPa
									t _{tr} =		°C
	1 == 1					-			W =	4,9697	m/s
	1 = 0		+				1		Verhältnis w _{max} /w _{min}		
			-				- Y		Volumenstr	öme	
-	-						· · · · · ·		Betrieb =		m³/h
									Norm, feucht =		m³/h
	-							-	Norm, trocken =		m³/h
									Attima Medical	8.19	211 110
						9			Sondengröße		
									Absaugerate	2,8	m³/h
_	_								berechnet	14,12	mm
		Ble	enden	konstante					gewählt		mm
							Tel [K] · danae Lem				
			Diar	donfaktor			PRIah, [hP	a1			

SGS-TÜV Saar GmbH

Auftrags-Nr. 5625528.21 Rev. A

Berichtsdatum: 14.01.2025 Anhang Seite 16 von 19

Auswertung kontinuierlich erfasster Komponenten hier Gesamt org. Kohlenstoff [Cges.]

Auftraggeber: BASF

Berichtsnummer: 5625528.20

Anlage: Kaurit-Leim

Messort: A 077

Messkomponente: Gesamt org. Kohlenstoff [Cges.]

PM-Nr. des Analysators: 541-23-022

Messung-Nr.		1	2	3	4	5	6
Datum		14.09.21	14.09.21	14.09.21	14.09.21	14.09.21	14.09.21
Uhrzeit		09:38 - 10:08	10:08 - 10:38	10:38 - 11:08	11:08 - 11:38	11:38 - 12:08	12:08 - 12:38
Barometerstand	[hPa]	1001	1001	1001	1001	1001	1001
Feuchte Abgas	[Vol-%]	2,30	:2,30	2,30	2,30	2,40	2,40
Abgasreinigung vorhanden		Nein	Nein	Nein	Nein	Nein	Nein
Volumenstrom im Normzustand	[m³/h]	115	94	289	201	80	127

Ergebnisse

Messwert	[mg/m³]	5,2	4,0	4,6	29,4	21,1	19,1
Konzentration Drift korr.	[mg/m³ _{N,tr}]	5,1	3,9	4,4	29,9	21,3	19,2
Massenstrom	[g/h]	0,588	0,364	1,282	6,029	1,698	2,439
Gesamtmessunsicherheit	[mg/m³N,tr]	2,60	2,58	2,58	2,66	2,62	2,62

Bewertung der Drit	Onit max. abs. [%] Bewertung der Drift				
Drift max. abs. [%]			2,23		
Messende	Endpunkt	16:52	142,49		
Ablesewert nach	Nullpunkt	14.09.21	1,13		
Messbeginn	Endpunkt	08:37	144,58		
Einstellwert vor	Nullpunkt	14.09.21	0,00		

		tes Prüfgas chnet als Cges.	
Prüfgaskor	nzentration	Flaschen-	Haltbar
Sollwert	Einheit	nummer	bis
144,578	mg/m³	4722665	08 / 2022

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 17 von 19

Diskontinuierliche Probenahme und Auswertung bezüglich Formaldehyd

Auftraggeber: BASF

Auftragsnummer: 5625528.20

Anlage: Kaurit-Leim

Messort: A077

Messkomponente: Formaldehyd

Bearbeiter:

-11.11

PM-Nr. der Gasuhr: 541-21-019

Messung-Nr.		1	2	3	4	5	6
Datum		14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.09.2021
Uhrzeit		09:39 - 10:09	10:24 - 10:54	11:09 - 11:39	12:35 - 13:05	14:38 - 15:08	15:18 - 15:48
Barometerstand	[hPa]	1.001	1.001	1.001	1.001	1.001	1.001
Zählerstand Anfang	[m³]	30,8893	30,9165	30,9434	30,9704	31,0038	31,0382
Zählerstand Ende	[m³]	30,9139	30,9408	30,9679	30,9961	31,0349	31,0690
Abgesaugtes Volumen	[m³]	0,025	0,024	0,024	0,026	0,031	0,031
Temperatur an der Uhr	[°C]	21	23	26	26	29	31
Sondentemperatur	[°C]	180	180	180	180	180	180
Korrekturfaktor Gasuhr	100	1,000	1,000	1,000	1,000	1,000	1,000
Probenbezeichnung		77F1	77F:2	77F3	77F4	77F5	77F6
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja	ja	ja
Normvolumen	[m³]	0,023	0,022	0,022	0,023	0,028	0,027
Sauerstoffgehalt	[Vol-%]	1.25.1	-	+		4	÷
Bezugssauerstoffgehalt	[Vol-%]	I -3 I	- 97.71	-	100	1.00	97
Volumenstrom im Normzustand	[m³/h]	115	94	289	201	80	127
Analysenergebnis	[mg/Probe]	0,006	0,005	0,011	0,067	0,021	0,024
Konzentration	[mg/m³]	0,261	0,227	0,500	2,913	0,750	0,889
Konzentration O ₂ -Bez.	[mg/m³]	441	311	7	1.48	8.1	9
Massenstrom	[kg/h]	< 0,0001	< 0,0001	0,0001	0,0006	0,0001	0,0001
Gesamtmessunsicherheit	[mg/m³]	0,02	0,01	0,03	0,17	0,04	0,05
Blindwert							
Probenbezeichnung	(= = =	77FBW		15.7) +c
mittleres Normvolumen	[m³]	0,024	E-10/E-1			L 492.5	
Analysenwert	[mg]	0,003	4	4	14	T a	4
Analysenwert	[mg/m³]	0,124	2	-2-	10,50		-5-

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 18 von 19

Diskontinuierliche Probenahme und Auswertung bezüglich Ameisensäure

BASF Auftraggeber:

5625528.20 Auftragsnummer:

Anlage: Kaurit-Leim A077 Messort:

Ameisensäure

Messkomponente:

Bearbeiter:

541-21-016 PM-Nr der Gasuhr

Messung-Nr.		1	2	3	4	5	6
Datum		14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.09.202
Uhrzeit	4	09:39 - 10:09	10:24 - 10:54	11:09 - 11:39	12:35 - 13:05	14:38 - 15:08	15:18 - 15:48
Barometerstand	[hPa]	1.001	1.001	1.001	1.001	1.001	1.001
Zählerstand Anfang	[m³]	2,3064	2,3384	2,3701	2,4043	2,4377	2,4701
Zählerstand Ende	[m³]	2,3353	2,3667	2,4011	2,4341	2,4668	2,5000
Abgesaugtes Volumen	[m³]	0,029	0,028	0,031	0,030	0,029	0,030
Temperatur an der Uhr	[°C]	21	23	26	26	29	31
Sondentemperatur	[°C]	20	21	24	27	29	26
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	1,000	1,000
Probenbezeichnung		77M1	77M2	77M3	77M4	77M5	77M6
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja	ja	ja
Normvolumen	[m³]	0,027	0,026	0,028	0,027	0,026	0,027
Sauerstoffgehalt	[Vol-%]	197	10	-			- 1
Bezugssauerstoffgehalt	[Vol-%]		TAIL 1	-	1-0	F	
Volumenstrom im Normzustand	[m³/h]	115	94	289	201	80	127
Analysenergebnis	[mg/Probe]	< 0,010	< 0,010	0,021	0,010	< 0,010	< 0,010
Konzentration	[mg/m³]	< 0,370	< 0,385	0,750	0,370	< 0,385	< 0,370
Konzentration O ₂ -Bez.	[mg/m³]			4.4			
Massenstrom	[kg/h]	< 0,0001	< 0,0001	0,0002	0,0001	< 0,0001	< 0,0001
Gesamtmessunsicherheit	[mg/m³]	0,04	0,04	0,07	0,04	0,04	0,04
Blindwert				1		7	
Probenbezeichnung		77MBW		4		140	
mittleres Normvolumen	[m³]	0,027		Tu _s		14.1	*
Analysenwert	[mg]	< 0,01		-			
Analysenwert	[mg/m³]	< 0,373	1		-	-	

Auftrags-Nr. 5625528.21 Rev. A Berichtsdatum: 14.01.2025 Anhang Seite 19 von 19

Diskontinuierliche Probenahme und Auswertung bezüglich Methanol

Auftraggeber: BASF

Auftragsnummer: 5625528.20

Anlage: Kaurit-Leim

Messort: A077

Messkomponente: Methanol

Bearbeiter:

PM-Nr. der Gasuhr:	541-21-018						
Messung-Nr.		1	2	3	4	5	6
Datum		14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.09.202
Uhrzeit		09:39 - 10:09	10:24 - 10:54	11:09 - 11:39	12:35 - 13:05	14:38 - 15:08	15:18 - 15:4
Barometerstand	[hPa]	1.001	1.001	1.001	1.001	1.001	1.001
Zählerstand Anfang	[m³]	1,2169	1,2508	1,2849	1,3189	1,3530	1,3883
Zählerstand Ende	[m³]	1,2471	1,2812	1,3153	1,3489	1,3850	1,4205
Abgesaugtes Volumen	[m³]	0,030	0,030	0,030	0,030	0,032	0,032
Temperatur an der Uhr	[°C]	21	23	26	26	29	31
Sondentemperatur	[°C]	20	21	24	27	29	26
Korrekturfaktor Gasuhr		1,000	1,000	1,000	1,000	1,000	1,000
Probenbezeichnung		77A1	77A2	77A3	77A4	77A5	77A6
Dichtigkeitsprüfung durchge	eführt	ja	ja	ja	ja	ja	ja
Normvolumen	[m³]	0,028	0,027	0,027	0,027	0,029	0,028
Sauerstoffgehalt	[Vol-%]	26	= 3 = 1		-	2.6	
Bezugssauerstoffgehalt	[Vol-%]	1.6	-	-	18.1	-	-
Volumenstrom im Normzustand	[m³/h]	115	94	289	201	80	127
Analysenergebnis	[mg/Probe]	< 0,005	< 0,005	0,028	0,004	< 0,005	< 0,005
Konzentration	[mg/m³]	< 0,179	< 0,185	1,037	0,156	< 0,172	< 0,179
Konzentration O ₂ -Bez.	[mg/m³]	7. A.	1040	-	i i	+	3
Massenstrom	[kg/h]	< 0,0001	< 0,0001	0,0003	< 0,0001	< 0,0001	< 0,0001
Gesamtmessunsicherheit	[mg/m³]	0,02	0,02	0,10	0,01	0,02	0,02
Blindwert							
Probenbezeichnung		77ABW			2	1 - 2 - 1	
mittleres Normvolumen	[m³]	0,028			12		_
Analysenwert	[mg]	< 0,005					
Analysenwert	[mg/m³]	< 0,181					

TÜV RHEINLAND ENERGY & ENVIRONMENT GMBH

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub

> TÜV-Bericht Nr.: EuL/21267661/A Mainz, 15.11.2024

> > www.umwelt-tuv.de

tre-service@de.tuv.com

Die TÜV Rheinland Energy & Environment GmbH ist mit der Abteilung Immissionsschutz für die Arbeitsgebiete:

- Bestimmung der Emissionen und Immissionen von Luftverunreinigungen und Emissionen von Geruchsstoffen;
- Überprüfung des ordnungsgemäßen Einbaus und der Funktion sowie Kalibrierung kontinuierlich arbeitender Emissionsmessgeräte einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung;
- Feuerraummessungen;
- Eignungsprüfung von Messeinrichtungen zur kontinuierlichen Überwachung der Emissionen und Immissionen sowie von elektronischen Systemen zur Datenauswertung und Emissionsfernüberwachung
- Bestimmung der Schornsteinhöhen und Immissionsprognosen für Schadstoffe und Geruchsstoffe;
- Bestimmung der Emissionen und Immissionen von Geräuschen und Vibrationen, Bestimmung von Schallleistungspegeln und Durchführung von Schallnessungen an Windenergieanlagen

nach DIN EN ISO/IE:C 17025 akkreditiert.

Die Akkreditierung hat die DAkkS-Registriernummer: D-PL-11120-02-00.

Die <u>auszugsweise</u> Vervielfältigung des Berichtes bedarf der schriftlichen Genehmigung.

TÜV Rheinland Energy & Environment GmbH D-51105 Köln, Am Grauen Stein, Tel: 0221 806-5200, Fax: 0221 806-1349

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Seite 2 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Leerseite

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 3 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub

Name der nach § 29b BlmSchG

bekannt gegebenen Stelle: TÜV Rheinland

Energy & Environment GmbH

Befristung der Bekanntgabe: 03.03.2028

Berichtsnummer / Datum: EuL/21267661/A 15.11.2024

Betreiber: BASF SE

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

Standort: BASF SE

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

B306

Equipmentnummer/

Terminzeilennummer: 4709964

Kundennummer: 1034129

Messtermin: 24. & 26.09.2024

Berichtsumfang: insgesamt 38 Seiten

Anhang ab Seite 23

Anlagenzuordnung: TA Luft

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Seite 4 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Leerseite

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 5 von 38

Zusammenfassung

Anlage: Anlage

Quellennummern: A001, A002, A004, A005a, A005b, A006

Anlagenzustand: Es wurden je Quelle 3 Einzelmessungen bei betriebs-

üblicher Leistung vorgenommen.

Die angegebenen maximalen Messwerte beschreiben

die höchsten Werte aus allen Messungen.

A001

Messkomponen y	nte	Einheit	Maximaler Messwerty _{max} bezogen auf Bezugswert	Erw. Mess- unsicherheit (Up _{0,95})	Maximaler Mess- wert abzüglich erweiterter Mess- unsicherheit	Maximaler Mess- wert zuzüglich erweiterter Mess- unsicherheit	Emissions- begrenzung	Betriebszustand Auslastung
Gesamtstaub	-53	mg/m³	5,8	0,6	5	6	20	
O ₂ Be	zugswert	Vol%	*	-	No.	1.0	-	
CO ₂	COLUMN TO THE PARTY OF	(+)	-	391	199	- V		÷n.
Vol, t, p, Feuchte		Section				J		Jan Brand

Alle Konzentrationsangaben beziehen sich auf den Normzustand nach Abzug des Wasserdampfanteils

A002

Messkomponente y	Einheit	Maximaler Messwerty _{max} bezogen auf Bezugswert	Erw. Mess- unsicherheit (Up _{0,95})	Maximaler Mess- wert abzüglich erweiterter Mess- unsicherheit	Maximaler Mess- wert zuzüglich erweiterter Mess- unsicherheit	Emissions- begrenzung	Betriebszustand Auslastung
Gesamtstaub	mg/m³	8,0	0,4	<1	1	20	
O ₂ Bezugswert	Vol%	4		2-4	8	8	
CO ₂	40	4	i i	(E)	- 10° 10°	1.0	-
Vol, t, p, Feuchte							-

Alle Konzentrationsangaben beziehen sich auf den Normzustand nach Abzug des Wasserdampfanteils

A004

Messkomponente y Gesamtstaub		Einheit mg/m³	Maximaler Messwertyman bezogen auf Bezugswert 0,9	Erw. Mess- unsicherheit (Up _{0,95})	wort abatialish	Maximaler Mess- wert zuzüglich erweiterter Mess- unsicherheit 1	Emissions-	Betriebszustand Auslastung
CO ₂	4,000	-		- 8		8 1	9 "	
Vol, t, p, Feuchte		6 1	-	8.	1 2	8 1	8	_

Alle Konzentrationsangaben beziehen sich auf den Normzustand nach Abzug des Wasserdampfanteils

A005a

Messkomp y	oonente	Einheit	Maximaler Messwerty _{max} bezogen auf Bezugswert	Erw. Mess- unsicherheit (Up _{0,95})	Maximaler Mess- wert abzüglich erweiterter Mess- unsicherheit	Maximaler Mess- wert zuzüglich erweiterter Mess- unsicherheit	Emissions- begrenzung	Betriebszustand Auslastung
Gesamtstaub		mg/m³	6,1	0,6	6	7	20	
O ₂	Bezugswert	Vol%	+	3	100	31	-	
CO ₂		(e)		-1	1.0			-
Vol, t, p, Feuchte		201	-		-			

Alle Konzentrationsangaben beziehen sich auf den Normzustand nach Abzug des Wasserdampfanteils

Die Emissionswerte beziehen sich auf wasserdampffreies Abgas im Normzustand (273 K, 101,3 kPa). Grenzwerte der Anlage für Staub: 20 mg/m³, ab einem Massenstrom von 0,4 kg/h 10 mg/m³.

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Seite 6 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

A005b

Messkomponente y Gesamtstaub		Einheit mg/m³	Maximaler Messwerty _{max} bezogen auf Bezugswert 4,9	Erw. Mess- unsicherheit (Upq.95)	Maximaler Mess- wert abzüglich erweiterter Mess- unsicherheit	Maximaler Mess- wert zuzüglich erweiterter Mess- unsicherheit 6	Emissions-	Betriebszustand Auslastung
CO ₂		12	- 4				8	-
Vol, t, p, Feuchte		1112		= -		V	-	

Alle Konzentrationsangaben beziehen sich auf den Normzustand nach Abzug des Wasserdampfanteils

A006

Messkomponente y Gesamtstaub		Einheit mg/m³	Maximaler Messwerty _{max} bezogen auf Bezugswert 25,8	Erw. Mess- unsicherheit (Upq.95)	Maximaler Mess- wert abzüglich erweiterter Mess- unsicherheit	Maximaler Mess- wert zuzüglich erweiterter Mess- unsicherheit 28	Emissions-	Betriebszustand Auslastung
CO ₂		(-)	-	- 2	4	8	9	81
Vol, t, p, Feuchte		- 4			596	- × -		

Alle Konzentrationsangaben beziehen sich auf den Normzustand nach Abzug des Wasserdampfanteils

Die Emissionswerte beziehen sich auf wasserdampffreies Abgas im Normzustand (273 K, 101,3 kPa). Grenzwerte der Anlage für Staub: 20 mg/m³, ab einem Massenstrom von 0,4 kg/h 10 mg/m³.

Details zu dem erhöhten Staub-Massenkonzentration am Auslass A006 sind unter 6.4 beschrieben.

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichtsi-Nr.:EuL/21267661/A

Seite 7 von 38

Inhaltsverzeichnis

		Seite
Zusamm	enfassung	5
Inhaltsve	rzeichnis	7
1 Messa	ufgabe	9
1.1	Auftraggeber:	9
1.2	Betreiber:	9
1.3	Standort:	9
1.4	Anlage:	9
1.5	Datum der Messung:	9
1.6	Anlass der Messung:	9
1.7	Aufgabenstellung:	9
1.8	Messkomponenten und Messgrößen:	9
1.9	Ortsbesichtigung vor Messdurchführung:	10
1.10	Messplanabstimmung:	10
1.11	An der Messung beteiligte Personen:	10
1.12	Beteiligte weitere Institute:	10
1.13	Fachlich Verantwortliche:	10
2 Beschi	reibung der Anlage / gehandhabte Stoffe	11
2.1	Bezeichnung der Anlage:	11
2.2	Beschreibung der Anlage	11
2.3	Beschreibung der Emissionsquellen nach Betreiberangaben	11
2.4	Angabe der It. Genehmigungsbescheid möglichen Einsatzstoffe	12
2.5	Betriebszeiten nach Betreiberangaben	12
2.6	Einrichtung zur Erfassung und Minderung der Emissionen	12
3 Beschi	reibung der Probenahmestelle	14
3.1	Lage des Messquerschnittes	14
3.2	Lage der Messpunkte im Messquerschnitt	15
4 Mess-	und Analysenverfahren, Geräte	16
4.1	Abgasrandbedingungen	16
4.2	Automatische Messverfahren	17
4.3	Manuelle Messverfahren für gas- und dampfförmige Emissionen	18
4.4	Messverfahren für partikelförmige Emissionen	18
4.5	Besondere hochtoxische Abgasinhaltsstoffe	18
4.6	Geruchsemissionen	18
5 Betriet	szustand der Anlage während der Messungen	19
5.1	Produktionsanlage	19
5.2	Abgasreinigungsanlage	19
6 Zusam	menstellung der Messergebnisse und Diskussion	20
6.1	Bewertung der Betriebsbedingungen während der Messungen	20
6.2	Messergebnisse	20
6.3	Messunsicherheiten	21
6.4	Diskussion der Ergebnisse	22
7 Überei	cht über den Anhang	22

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Seite 8 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Leerseite

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 9 von 38

1 Messaufgabe

1.1 Auftraggeber: BASF SE

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

1.2 Betreiber: BASF SE

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

Ansprechpartner:

Telefon:

1.3 Standort: BASF SE

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

B306

1.4 Anlage: Anlage gemäß Nr. 4.1.16 EG des Anhangs 1

zur 4. BlmSchV

Anlagen-Nr.: 16.01

1.5 Datum der Messung: 24. & 26.09.2024

Datum der letzten Messung: nicht zutreffend, da Erstmessung

Datum der nächsten Messung: 2027

1.6 Anlass der Messung: Erstmalige Messung im Rahmen behördlicher

Auflagen

1.7 Aufgabenstellung: Feststellung der Emissionen gemäß

TA Luft und Anordnung vom 22.5.24

Genehmigungsbehörde: Struktur- und Genehmigungsdirektion Süd

Anordnung, Az.: 23/05/5.1/2023/0278 vom 22.05.2024

Grenzwerte: Staub: 20 mg/m³, ab einem Massenstrom von

0,4 kg/h 10 mg/m³

Ziffern des Bescheides: 1: Staub

Amtliche Messung: ja

1.8 Messkomponenten und Messgrößen: Staub sowie Feuchte, Volumenstrom, Druck

und Temperatur

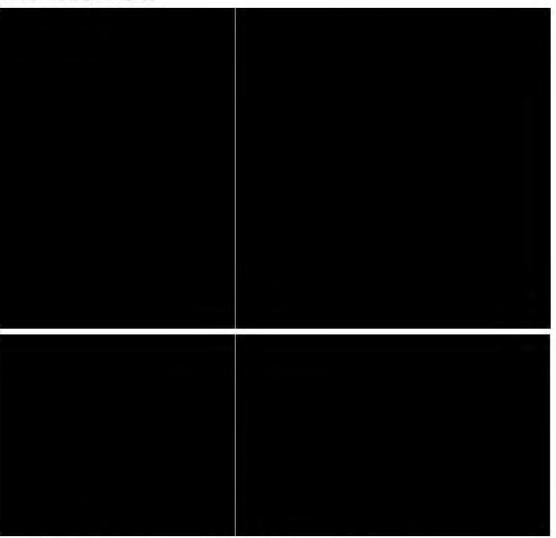
Seite 10 von 38

Ortsbesichtigung vor

1.9

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

	Messdurchführung:	durchgeführt am 04.07.2024
1.10	Messplanabstimmung:	mit dem Betreiber; die länderspezifische An- meldung wurde am 09.09.2024 an die Fach- behörde versendet
1.11	An der Messung beteiligte Personen:	
1.12	Beteiligte weitere Institute:	keine
1.13	Fachlich Verantwortliche:	
	Telefon-Nr.:	
	Email-Adresse:	


Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 11 von 38

2 Beschreibung der Anlage / gehandhabte Stoffe

2.1 Bezeichnung der Anlage: Sulfite-Fabrik (B306)

2.2 Beschreibung der Anlage

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Quellen Nr.:	UTM-Koordinaten:	Höhe über Grund:	Bauausführung
A001	32459063 5483333	44	Edelstahl
A002	32459056 5483332	44	GFK
A004	32459061 5483340	44	Edelstahl
A005a	32459062 5483335	43	Edelstahl
A005b	32459062 5483335	43	Edelstahl
A006	32459060 5483342	43	Edelstahl

Seite 12 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

2.4	Angaha dar It	Genehmigungsbesch	acid mäglichen	Eincatzetoffe
4.4	Aligabe del It.	Generalingungsbesch	icia mogniciien	LIIISatzstolle

Einsatzstoffe:

2.5 Betriebszeiten nach Betreiberangaben

Gesamtbetriebszeit:

2.6 Einrichtung zur Erfassung und Minderung der Emissionen

2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Art der Emissionserfassung: geschlossenes System, Saugzugventilator

2.6.1.2 Ventilatorkenndaten, m³/h: siehe Tabellen unter 2.6.2

2.6.1.3 Ansaugfläche in m²: entfällt, da geschlossenes System

2.6.2 Einrichtung zur Verminderung der Emissionen:

A001

Bezeichnung der vorgelagerten Apparate	Typ	Prinzip	Menge	Umlaufmenge Waschlösung	pH der Waschlösung	Bemerkungen
F3320	Tropfenabscheider	Gewebematten	12000 m³/h			Gewebematten
V3310A	Ventilator		15000 Nm3/h		2 = 2	
F3310	Tropfenabscheider	Lamellenabscheider	17300 Nm3/h			
K3310	Waschturm	Füllkörperkolonne		78 m³/h		Füllkörperkolonne mit Rafluxringen

A002

Bezeichnung der vorgelagerten Apparate	Typ	Prinzip	Menge	Umlaufmenge Waschlösung	pH der Waschlösung	Bemerkungen
V3510	Ventilator		21000 m³/h			Dauerbetrieb mit angedrosselter Saugseite
F3510	Filter			n.z.	n.z.	96 Filtersäcke 140x2800, automatische Abreinigung, Filtersackwechsel jährlich

A004

Bezeichnung der vorgelagerten Apparate	Typ	Prinzip	Mondo	Umlaufmenge Waschlösung	pH der Waschlösung	Bemerkungen
F3330	Tropfenabscheider	Gewebematten	9000 m³/h			
V3310B	Ventilator		15000 Nm3/h			

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 13 von 38

A005a

Bezeichnung der vorgelagerten Apparate	Typ	Prinzip	Menge	Umlaufmenge Waschlösung	The state of the s	Bemerkungen
F3120	Tropfenabscheider	Gewebematten	16500 Nm³/h			Gewebematten, 1 Abgasweg aufgeteilt auf 2 Tropfenabscheider)

A005b

Auslass	Bezeichnung der vorgelagerten Apparate	Typ	Prinzip	Menge	Umlaufmenge Waschlösung	pH der Waschlösung	Bemerkungen
A005b	F3140	Tropfenabscheider	Gewebematt:en	16500 Nm3/h		7	Gewebematten
	K3110	Absorber	Füllkörperkolonne		140m³/h	8,0 - 8,5	Tellerettes
	K3120	Absorber	Füllkörperkolonne		130 m³/h	4,6 - 5,2	
	V5110	Ventilator		25000 m³/h			SO ² Gasgebläse "drückt" (11- 15%iges SO2 Gas mit N ²)

A006

F3220 V3210	Tropfenabscheider Ventilator	Gewebematten	16500 Nm³/h 30000 m³/h		Gewebematten Füllkörperkolonne
Bezeichnung der vorgelagerten Apparate	Typ	Prinzip	Menge	Umlaufmenge Waschlösung	Bemerkungen

2.6.3 Einrichtung zur Verdünnung des Abgases: keine

Seite 14 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

3 Beschreibung der Probenahmestelle

3.1 Lage des Messquerschnittes

Die Messstellen befindet sich auf dem Dach des Gebäudes

	A001	A002	A004	A005a	A005b	A006
Abmessungen des Messquerschnittes:	114 x 114 cm	Ø 50,5 cm	97 x 97 cm	130 x 130 cm	130 x 130 cm	119 x 200 cm
gerade Einlaufstrecke:	n.z.	140 cm	n.z.	n.z.	n.z.	n.z.
gerade Auslaufstrecke:	n.z.	140 cm	n.z.	n.z.	n.z.	n.z.
Strecke bis zur Mündung:	146 cm	140 cm	115 cm	148 cm	148 cm	148 cm
Empfehlung ≥ 5·Dh Einlauf und 2·Dh Auslauf (5·Dh vor Mündung):	nicht erfüllt	erfüllt	nicht erfüllt	nicht erfüllt	nicht erfüllt	nicht erfüllt

3.1.2 Arbeitsfläche und Messbühne

Die Arbeitsfläche ist ausreichend groß und die Messöffnungen sind gefahrlos zu erreichen. Eine ausreichende Rückenfreiheit zum Einführen der Entnahmesonden ist gegeben. Ein Wetterschutz ist sowohl an den Messöffnungen als auch am Aufstellort vorhanden.

3.1.3 Messöffnungen:

	A001	A002	A004	A005a	A005b	A006
Anzahl der Messöff- nungen:	3	2	2	3	3	3
Lage der Messöff- nungen:	in einer Ebene, von unten	in einer Ebene, 90° versetzt	in einer Ebene, von unten	in einer Ebene, von unten	in einer Ebene, von unten	in einer Ebene, von unten
Lichter Durchmes- ser:	7,6cm	7,6cm	7,6cm	7,6cm	7,6cm	7,6cm
Stutzenlänge:	4	2.17	4	2	2	-

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 15 von 38

3.1.4 Strömungsbedingungen im Messquerschnitt

	A001	A002	A004	A005a	A005b	A006
Winkel zwischen Gasstrom/Mittelachse Abgaskanal < 15°:	erfüllt	erfüllt	erfüllt	erfüllt	erfüllt	erfüllt
keine negative lokale Strömung:	erfüllt	erfüllt	erfüllt	erfüllt	erfüllt	erfüllt
Verhältnis von höchster zu niedrigster Ge- schwindigkeit < 3:1:	erfüllt	erfüllt	erfüllt	erfüllt	erfüllt	erfüllt
Mindestgeschwindigkeit (in Abhängigkeit vom verwendeten Messver- fahren):	erfüllt	erfüllt	erfüllt	erfüllt	erfüllt	erfüllt

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Messbedingungen nach DIN EN 15259: Die Anforderungen werden eingehalten, auch

wenn die Empfehlungen nicht erfüllt werden.

ergriffene Maßnahmen: Die Messpunkteanzahl wurde von 4 auf 8

(Quelle A004), bzw. von 9 auf 12 (Quellen (A001, A005a, A005b, A006) erhöht, da die Empfehlung an die gerade Strömungsstrecke

nicht eingehalten wurde.

zu erwartende Auswirkungen auf das Er-

gebnis:

Die Anforderungen an die Strömungsbedingen wurden auch mit erhöhter Messpunktzahl erfüllt. Daher sind keine Auswirkungen auf die Messunsicherheit zu erwarten.

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt:

	A001	A002	A004	A005a	A005b	A006
Achsen:	3	2	2	3	3	3
Messpunkte je Achse:	4	2	4	4	4	4
Abstand der Mess- punkte vom Kanalrand:	14, 43, 71, 100	7, 43	12, 36, 61, 85	16, 49, 81, 114	16, 49, 81, 114	15, 45, 74, 104

3.2.2 Homogenitätsprüfung:

nicht durchgeführt, weil Netzmessungen vorgenommen wurden

Seite 16 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Ermittlungsmethode: Staudrucksonde mit Mikromanometer

Messverfahren: DIN EN ISO 16911-1, Juni 2013

Messeinrichtung: Sika / GMH 3181 Messbereich: -100 -2500 Pa

Berechnungsverfahren: gemäß DIN EN ISO 16911-1 ohne Berück-

sichtigung von Wandeffekten

kontinuierliche Ermittlung: nein

4.1.2 Statischer Druck im Abgaskamin: Manometer nach 4.1.1

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung: Lufft / Dosenbarometer

4.1.4 Abgastemperatur:

Messeinrichtung: Messdatenerfassung wie in 4.2.1.8 mit NiCr-/Ni-Thermoelement, Typ K

Messbereich: -200 bis 1370°C

kontinuierliche Ermittlung: ja

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messverfahren: Ermittlung über psychrometrische Tempera-

turdifferenz (2-Thermometermethode)

4.1.6 Abgasdichte: berechnet unter Berücksichtigung der Abgas-

bestandteile an Sauerstoff (O₂), Kohlendioxid (CO₂), Stickstoff (mit 0,933 % Argon), Abgasfeuchte (Wasserdampfanteil im Abgas) sowie der Abgastemperatur und Druckverhältnisse

im Kanal.

4.1.7 Abgasverdünnung: nicht festgestellt

4.1.8 Volumenstrom

mittlere Abgasgeschwindigkeit: s. 4.1.1

Querschnittsfläche: Längenmessung der Messachsen und Stut-

zen mit einer Messstange, Abmessen der

Messstange mit Gliedermaßstab

Fläche der Volumenstrommesseinrichtung

zu Querschnittsfläche: < 5 %

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 17 von 38

4.2	Automatische	Messverfahren

4.2.1 Messkomponente: Sauerstoff (O₂)

4.2.1.1 Messverfahren: Bestimmung der Volumenkonzentration von

Sauerstoff, Standardreferenzverfahren: Para-

magnetismus gemäß

DIN EN 14789, Mai 2017

4.2.1.2 Analysator: Horiba / PG-350 E Zertifizierung nach DIN

EN 15267-3, Einsatzfähigkeit des Geräts für

den mobilen Einsatz wurde verifiziert.

4.2.1.3 eingestellter Messbereich in Vol.-%: 0 - 25

4.2.1.4 Gerätetyp eignungsgeprüft: siehe unter 4.2.1.2

4.2.1.5 Probenahme und Probenaufbereitung

Entnahmesonde: Edelstahl, beheizt durch Abgas

maximale Eintauchtiefe in m:

Staubfilter: Quarzwatte, beheizt durch Abgas

Probengasleitung vor Gasaufbereitung: beheizt durch Abgas 150

Probengasleitung vor Gasaufbereitung: Länge in m: 4

Probengasleitung nach Gasaufbereitung: Länge in m: 25

Messgasaufbereitung

Messgaskühler: M & C / PSS 5

Temperatur geregelt auf: ≤ 4°C

4.2.1.6 Überprüfung von Null- und Referenzpunkt mit Prüfgasen

Nullgas: N₂

Prüfgas und Trägergas: O2, Außenluft

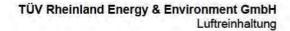
Konzentration: in Vol.-% 20,94

Prüfgas und Nullgas durch das gesamte Probenahmesystem incl. Sonde und Messgasaufbereitung aufgegeben: ja

4.2.1.7 Einstellzeit des ges. Messaufbaus in s:

(Prüfgas über die Entnahmesonde) < 60

4.2.1.8 Messwerterfassungssystem: Yokogawa / MV 1012


Erfassungsprogramm (Software): Yokogawa / Excel

4.2.1.9 Maßnahmen zur Qualitätssicherung

Ergebnis der Überprüfung des Nullpunkts und des Referenzpunkts nach der Messung:

Komponente	Drift am Nullpunkt	Drift am Referenzpunkt
O ₂	< 2,0 %	< 2,0 %

Eine rechnerische Berücksichtigung der Null- und Referenzpunktdrift war nicht erforderlich.

Seite 18 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen nicht zutreffend

4.4 Messverfahren für partikelförmige Ernissionen

4.4.1 Messkomponente: Gesamtstaub

4.4.1.1 Messverfahren: Ermittlung der Staubmasse bei geringen

Staubgehalten;

manuelles gravimetrisches Verfahren gemäß

DIN EN 13284, Teil 1, Februar 2018

4.4.1.2 Probenahme und Probenaufbereitung

Rückhaltesystem für partikelförmige Stoffe

Filtergerät: Planfilterkopfgerät

Anordnung: Instack mit Krümmer zwischen Entnahme-

sonde und Filtergehäuse

Filtrationstemperatur in °C: Abgastemperatur

Wirkdurchmesser Entnahmesonde: siehe Tabelle, Anhang 2

Material Entnahmesonde: Titan

Material Absaugrohr: Edelstahl
Material Filter: Quarzfaser

Filterdurchmesser: 50 mm

Absorptionssysteme für filtergängige Stoffe: nicht zutreffend

Absaugeinrichtung: Drehschieberpumpe, mind. 6 m³/h

mit Gaszähler G4

4.4.1.3 Behandlung der Filter und der Ablagerungen

Trocknungstemperatur / -zeit

vor der Beaufschlagung: 300 °C / mind. 1 h nach der Beaufschlagung: 160 °C / mind. 1 h

Rückgewinnung von Ablagerungen

vor dem Filter: nach jeder Messreihe

(mindestens einmal pro Tag)

Konditionierung im Wägeraum (vor / nach): 24 h / 24 h (Exsikkator)

Waage / Hersteller: XPE 205 / Mettler Toledo

Standort Analysenlabor: Köln

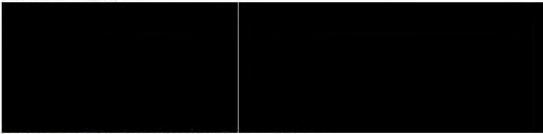
4.4.1.4 Aufbereitung und Analyse der

Filter und Absorptionslösungen: nicht zutreffend

Die Angaben zur Einhaltung der isokinetischen Bedingungen finden sich in Anhang 2.

4.5 Besondere hochtoxische Abgasinhaltsstoffe nicht zutreffend

4.6 Geruchsemissionen nicht zutreffend



Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 19 von 38

5 Betriebszustand der Anlage während der Messungen

5.1 Produktionsanlage

weitere charakteristische Betriebsgrößen: keine

Abweichungen von genehmigter oder bestimmungsgemäßer Betriebsweise: nicht festgestellt

besondere Vorkommnisse: keine

5.2 Abgasreinigungsanlage nicht zutreffend

Betriebsdaten: Die Betriebsdaten der Abgasreinigungsan-

lage sind in Anhang 4 aufgeführt.

emissionsbeeinflussende Parameter: Funktion des Gewebefilters

Besonderheiten der Abgasreinigung: keine

Abweichungen von genehmigter oder be-

stimmungsgemäßer Betriebsweise: nicht festgestellt

besondere Vorkommnisse: keine

Seite 20 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

6 Zusammenstellung der Messergebnisse und Diskussion

6.1 Bewertung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Ergebnisse der Schadstoffuntersuchungen

A001

Tabelle 6.1: Ergebnisse der Emissionsmessungen für Gesamtstaub

Messtag	Messung Nr.	von	rzeit bis	O ₂ -Gelnait	Gesamtstaub- Konzentration mg/m³	relevant mg/m³	erw. MU U _{0,95} mg/m³	Staub- Massenstrom g/h
26.09.24	1	14:25	15:01	21,0	3,2	3,2	0,6	32,1
26.09.24	2	15:03	15:39	21,0	5,7	5,7	0,6	56,6
26.09.24	3	15:41	16:17	21,0	5,8	5,8	0,6	58,0
Minimum					3,2	3,2		
Maximum					5,8	5,8		
Mittelwert					4.9	4,9		

A002

Tabelle 6.1: Ergebnisse der Emissionsmessungen für Gesamtstaub

Messtag	Messung Nr.	von	rzeit bis	O ₂ -Gelhalt	Gesamtstaub- Konzentration mg/m²	relevant mg/m³	erw. MU U _{0,95} mg/m³	Staub- Massenstrom g/h
26.09.24	1	14:25	14:55	20,9	0,7	0,7	0,4	5,58
26.09.24	2	14:59	15:29	20,9	0,8	8,0	0,4	6,21
26.09.24	3	15:32	16:02	21,0	< 0,4	< 0,4	0,4	< 3,31
Minimum	·				< 0,4	< 0,4	1	
Maximum					0,8	0,8	11	
Mittelwert	•			v	0,6	0,6		

A004

Tabelle 6.1: Ergebnisse der Emissionsmessungen für Gesamtstaub

Messtag	Messung Nr.	von	rzeit bis	O ₂ -Gelnait	Gesamtstaub- Konzentration mg/m³	relevant mg/m³	erw. MU U _{0,96} mg/m³	Staub- Massenstrom g/h
24.09.24	1	15:22	15:52	20,9	0,8	0,8	0,4	6,31
24.09.24	2	15:54	16:24	20,8	0,9	0,9	0,4	6,90
24.09.24	3	16:24	16:54	20,8	0,6	0,6	0,4	4,52
Minimum.					0,6	0,6		
Maximum					0,9	0,9		
Mittelwert					0,8	0,8		

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 21 von 38

A005a

Tabelle 6.1: Ergebnisse der Emissionsmessungen für Gesamtstaub

Messtag	Messung Nr.	von	rzeit bis	O ₂ -Gelhalt Vol'%	Gesamtstaub- Konzentration mg/m³	relevant mg/m³	erw. MU U _{0,95} mg/m³	Staub- Massenstrom g/h
26.09.24	4	12:13	12:49	3,4	5,5	5,5	0,6	61,7
26.09.24	2	12:51	13:27	3,4	5,5	5,5	0,6	61,5
26.09.24	3	13:29	14:05	3,4	6,1	6,1	0,6	67,8
Minimum					5,5	5,5		
Maximum					6,1	6,1		
Mittelwert					5,7	5,7		

A005b

Tabelle 6.1: Ergebnisse der Emissionsmessungen für Gesamtstaub

Messtag	Messung Nr.	von	rzeit bis	O ₂ -Gelhalt	Gesamtstaub- Konzentration mg/m³	relevant mg/m³	erw. MU U _{0,95} mg/m³	Staub- Massenstrom g/h
26.09.24	1	12:12	12:48	3,3	0,4	0,4	0,4	4,83
26.09.24	2	12:50	13:26	3,3	4,3	4,3	0,5	48,7
26.09.24	3	13:30	14:06	3,2	4,9	4,9	0,6	55,7
Minimum					0,4	0,4		
Maximum					4,9	4,9	II.	
Mittelwert					3,2	3,2		

A006

Tabelle 6.1: Ergebnisse der Emissionsmessungen für Gesamtstaub

Messtag	Messung Nr.	von	rzeit bis	O ₂ -Gelhalt	Gesamtstaub- Konzentration mg/m³	relevant mg/m³	erw. MU U _{0,95} mg/m³	Staub- Massenstrom g/h
24.09.24	1	15:12	15:48	21,0	25,8	25,8	2,3	475
24.09.24	2	15:53	16:29	20,9	20,4	20,4	1,5	376
24.09.24	3	16:29	17:05	20,9	18,9	18,9	1,4	349
Minimum					18,9	18,9		
Maximum					25,8	25,8		
Mittelwert					21,7	21,7		

6.3 Messunsicherheiten

Die Tabelle zur Beurteilung der Messergebnisse, in der maximaler Messwert und erweiterte Messunsicherheit angegeben sind, befindet sich in der Zusammenfassung ab Seite 5.

Die Messunsicherheiten werden bei allen Komponenten rechnerisch ermittelt. Hierbei werden die Vorgaben der komponentenspezifischen Normen berücksichtigt.

Seite 22 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

6.4 Diskussion der Ergebnisse

Unter Berücksichtigung der Messgenauigkeit der angewandten Messverfahren und der vorgefundenen Betriebsweise der Anlage sind die Ergebnisse plausibel.

Im Rahmen der Emissionsmessungen am Auslass A006 wurde ein erhöhter Befund bzgl. der Messkomponente Staub ermittelt. Die vermutliche Ursache wurde ermittelt und beseitigt, eine neue Messkampagne ist bereits geplant. Die weiteren Details werden durch den Betreiber in einer ergänzenden Stellungnahme zu diesem Bericht beschrieben.

Die Prüfergebnisse beziehen sich auf die untersuchte Anlagen im beschriebenen Zustand.

Abteilung Immissionsschutz / Luftreinhaltung (EuL)

Bearbeiter Stellvertreter des fachlich Verantwortlichen

EuL/21267661/A

7 Übersicht über den Anhang

A1: Abgasrandbedingungen

A2: Auswertung der Schadstoffmessungen

A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten

A4: Aufzeichnungen des Betreibers

A5: Abkürzungen

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 23 von 38

Anhang A1: Abgasrandbedingungen

A001

Tabelle Anhang: Bestimmung der Volumenströme

Anlage		B306, Sulfit-Fabrik
Messstelle		Kamin Quelle A1
Messtag		26.9,2024
Messung	Nr.	9
Messbeginn	Uhr	14:15
Messdauer	min	12
HAUPTVOLUMENSTROM (Mittelwerte)		
Temperatur	°C	35
desgleichen absolut	K	308
Barometerstand	hPa	1005
statische Druckdifferenz	hPa	0,0
absoluter Druck im Kanal	hPa	1005
Sauerstoffkonzentration	Vol%	20,9
Bezugs-Sauerstoffkonzentration	Vol%	
Kohlendioxidkonzentration	Vol%	0,0
Feuchte (ff)	Vol%	3,2
Dichte (t,p,f)	kg/m³	1,123
Mittlere Gasgeschwindigkeit	m/s	2,5
Verhältnis v _{max} :v _{min}		1,1:1
Kanalquerschnitt	m²	1,30
unnormierter Volumenstrom q _{V,w} (t,p,f)	m³/h (t,p,f)	11.600
erweiterte Messunsicherheit	m³/h	15.926
relative erweiterte Messunsicherheit	%	137,3
Volumenstrom, normiert feucht (Norm f)	m³/h (n,f)	10.200
Volumenstrom, normiert q _{V,0d} (Norm tr)	m³/h (n,tr)	9.870

Tabelle Anhang: Angaben zu Maßnahmen zur Qualitätssicherung automatischer Messverfahren gemäß Kapitel 4, 4.2.1.9

Messtag	26.9.2024
Komponente O ₂ :	
Drift am Nullpunkt	0,1%
Drift am Referenzpunkt	0,7%

Es erfolgte eine rechnerische Berücksichtigung der Driften.

Messtag	26.9.2024		
Messung	1		
Messbeginn	14:15		
200	Geschwindigkeit		
Achse / Punkt	m/s		
1/1	2,4		
1/2	2,4		
1/3	2,4		
1/4	2,4		
2/1	2,4		
2/2	2,4		
2/3	2,5		
2/4	2,5		
3/1	2,5		
3/2	2,4		
3/3	2,5		
3/4	2,7		
Verhältnis	- 19		
V _{max} :V _{min}	1,1.1		
Vmin	2,4		
V _{max}	2,7		
V _{mittel}	2,5		

Seite 24 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

A002

Tabelle Anhang: Bestimmung der Volumenströme

Anlage		B306, Sulfit-Fabrik
Messstelle		Kamin Quelle A2
Messtag		26.9.2024
Messung	Nr.	1
Messbeginn	Uhr	14:25
Messdauer	min	4
HAUPTVOLUMENSTROM (Mittelwerte)		
Temperatur	°C	35
desgleichen absolut	K	308
Barometerstand	hPa	1005
statische Druckdifferenz	hPa	-0,4
absoluter Druck im Kanal	hPa	1005
Sauerstoffkonzentration	Vol%	20,9
Bezugs-Sauerstoffkonzentration	Vol%	-
Kohlendioxidkonzentration	Vol%	0,0
Feuchte (ff)	Vol%	2,4
Dichte (t,p,f)	kg/m³	1,126
Mittlere Gasgeschwindigkeit	m/s	12,6
Verhältnis v _{max} :v _{min}		1,3 : 1
Kanalquerschnitt	m²	0,20
unnormierter Volumenstrom q _{V,w} (t,p,f)	m³/h (t,p,f)	9.040
erweiterte Messunsicherheit	m³/h	518
relative erweiterte Messunsicherheit	%	5,7
Volumenstrom, normiert feucht (Norm f)	m³/h (n,f)	7.940
Volumenstrom, normiert q _{V,0d} (Norm tr)	m³/h (n,tr)	7.750

Tabelle Anhang: Angaben zu Maßnahmen zur Qualitätssicherung automatischer Messverfahren gemäß Kapitel 4, 4.2.1.9

Messtag 26.9.2	
Komponente O ₂ :	
Drift am Nullpunkt	0,6%
Drift am Referenzpunkt	0.1%

Es erfolgte eine rechnerische Berücksichtigung der Driften.

Messtag	26.9.2024
Messung	1
Messbeginn	14:25
200	Geschwindigkeit
Achse / Punkt	m/s
1/1	11,3
1/2	12,5
2/1	14,2
2/2	12,2
Verhältnis	
V _{max} :V _{min}	1,3:1
V _{min}	11,3
V _{max}	14,2
V _{mittel}	12,6

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 25 von 38

A004

Tabelle Anhang: Bestimmung der Volumenströme

Anlage		B306, Sulfit-Fabrik
Messstelle		Kamin Quelle A4
Messtag		24.9.2024
Messung	Nr.	1
Messbeginn	Uhr	15:10
Messdauer	min	8
HAUPTVOLUMENSTROM (Mittelwerte)		
Temperatur	°C	43
desgleichen absolut	K	316
Barometerstand	hPa	991
statische Druckdifferenz	hPa	0,0
absoluter Druck im Kanal	hPa	991
Sauerstoffkonzentration	Vol%	20,9
Bezugs-Sauerstoffkonzentration	Vol%	3
Kohlendioxidkonzentration	Vol%	0,0
Feuchte (ff)	Vol%	2,5
Dichte (t,p,f)	kg/m³	1,082
Mittlere Gasgeschwindigkeit	m/s	2,6
Verhältnis v _{max} :v _{min}		1,1:1
Kanalquerschnitt	m²	0,94
unnormierter Volumenstrom q _{v.w} (t,p,f)	m³/h (t,p,f)	8.830
erweiterte Messunsicherheit	m³/h	11.248
relative erweiterte Messunsicherheit	%	127,4
Volumenstrom, normiert feucht (Norm f)	m³/h (n,f)	7.460
Volumenstrom, normiert q _{v.od} (Norm tr)	m³/h (n,tr)	7.270

Tabelle Anhang: Angaben zu Maßnahmen zur Qualitätssicherung automatischer Messverfahren gemäß Kapitel 4, 4.2.1.9

Messtag	24.9.2024
Komponente O ₂ :	
Drift am Nullpunkt	0,2%
Drift am Referenzpunkt	0,2%

Es erfolgte eine rechnerische Berücksichtigung der Driften.

Messtag	24.9.2024
Messung	1
Messbeginn	15:10
Control of the Control	Geschwindigkeit
Achse / Punkt	m/s
1/1	2,5
1/2	2,5
1/3	2,6
1/4	2,7
2/1	2,5
2/2	2,7
2/3	2,7
2/4	2,6
Verhältnis	
V _{max} :V _{min}	1,1:1
V _{min}	2,5
V _{max}	2,7
V _{mittel}	2,6

Seite 26 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

A005a

Tabelle Anhang: Bestimmung der Volumenströme

Anlage		B306, Sulfit-Fabrik
Messstelle		Kamin Quelle A5A
Messtag		26.9.2024
Messung	Nr.	1
Messbeginn	Uhr	12:08
Messdauer	min	12
HAUPTVOLUMENSTROM (Mittelwerte)		
Temperatur	°C	71
desgleichen absolut	K	344
Barometerstand	hPa	1005
statische Druckdifferenz	hPa	0,0
absoluter Druck im Kanal	hPa	1005
Sauerstoffkonzentration	Vol%	3,4
Bezugs-Sauerstoffkonzentration	Vol%	3.50
Kohlendioxidkonzentration	Vol%	0,0
Feuchte (ff)	Vol%	19,5
Dichte (t,p,f)	kg/m³	0,923
Mittlere Gasgeschwindigkeit	m/s	2,9
Verhältnis v _{max} :v _{min}	1	1,2:1
Kanalquerschnitt	m²	1,69
unnormierter Volumenstrom q _{v,w} (t,p,f)	m³/h (t,p,f)	17.420
erweiterte Messunsicherheit	m³/h	21.746
relative erweiterte Messunsicherheit	%	124,8
Volumenstrom, normiert feucht (Norm f)	m³/h (n,f)	13.710
Volumenstrom, normiert q _{v,0d} (Norm tr)	m³/h (n,tr)	11.040

Tabelle Anhang: Angaben zu Maßnahmen zur Qualitätssicherung automatischer Messverfahren gemäß Kapitel 4, 4.2.1.9

Messtag	26.9.2024
Komponente O ₂ :	
Drift am Nullpunkt	1,2%
Drift am Referenzpunkt	0.6%

Es erfolgte eine rechnerische Berücksichtigung der Driften.

Messtag	26.9.2024
Messung	1
Messbeginn	12:08
	Geschwindigkeit
Achse / Punkt	m/s
1/1	2,7
1/2	2,7
1/3	2,9
1/4	3,1
2/1	2,7
2/2	2,8
2/3	2,8
2/4	2,8
3/1	3,2
3/2	2,7
3/3	2,8
3/4	3,2
Verhältnis	
V _{max} :V _{min}	1,2:1
V _{min}	2,7
V _{max}	3,2
V _{mittel}	2,9

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 27 von 38

A005b

Tabelle Anhang: Bestimmung der Volumenströme

Anlage		B306, Sulfit-Fabrik
Messstelle		Kamin Quelle A5b
Messtag		26.9.2024
Messung	Nr.	1
Messbeginn	Uhr	12:08
Messdauer	min	12
HAUPTVOLUMENSTROM (Mittelwerte)		22
Temperatur	°C	70
desgleichen absolut	K	343
Barometerstand	hPa	1005
statische Druckdifferenz	hPa	0,0
absoluter Druck im Kanal	hPa	1005
Sauerstoffkonzentration	Vol%	3,4
Bezugs-Sauerstoffkonzentration	Vol%	- P
Kohlendioxidkonzentration	Vol%	0,0
Feuchte (ff)	Vol%	20,0
Dichte (t,p,f)	kg/m³	0,924
Mittlere Gasgeschwindigkeit	m/s	2,9
Verhältnis v _{max} v _{min}	- 100	1,3:1
Kanalquerschnitt	m²	1,69
unnormierter Volumenstrom q _{v.w} (t,p,f)	m³/h (t,p,f)	17.930
erweiterte Messunsicherheit	m³/h	21.020
relative erweiterte Messunsicherheit	%	117,2
Volumenstrom, normiert feucht (Norm f)	m³/h (n,f)	14_160
Volumenstrom, normiert q _{V,0d} (Norm tr)	m³/h (n,tr)	11.330

Tabelle Anhang: Angaben zu Maßnahmen zur Qualitätssicherung automatischer Messverfahren gemäß Kapitel 4, 4.2.1.9

Messtag	26.9.2024
Komponente O ₂ :	
Drift am Nullpunkt	0,0%
Drift am Referenzpunkt	0,9%

Es erfolgte eine rechnerische Berücksichtigung der Driften.

Tabelle Anhang: Geschwindigkeitsverteilung im Messquerschnitt

Messtag	26.9.2024
Messung	1
Messbeginn	12:08
	Geschwindigkeit
Achse / Punkt	m/s
1/1	2,7
1/2	2,9
1/3	2,9
1/4	2,9
2/1	3,4
2/2	2,7
2/3	2,8
2/4	3,4
3/1	2,7
3/2	2,9
3/3	2,9
3/4	3,3
Verhältnis	
V _{max} :V _{min}	1,3:1
V _{min}	2,7
V _{max}	3,4
V _{mittel}	2,9

Seite 28 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

A006

Tabelle Anhang: Bestimmung der Volumenströme

Anlage		B306, Sulfit-Fabrik
Messstelle		Karnin Quelle A6
Messtag		24.9.2024
Messung	Nr.	1
Messbeginn	Uhr	14:55
Messdauer	min	12
HAUPTVOLUMENSTROM (Mittelwerte)		
Temperatur	°C	43
desgleichen absolut	K	316
Barometerstand	hPa	991
statische Druckdifferenz	hPa	0,0
absoluter Druck im Kanal	hPa	991
Sauerstoffkonzentration	Vol%	20,9
Bezugs-Sauerstoffkonzentration	Vol%	
Kohlendioxidkonzentration	Vol%	0,0
Feuchte (ff)	Vol%	1,5
Dichte (t,p,f)	kg/m³	1,086
Mittlere Gasgeschwindigkeit	m/s	2,6
Verhältnis v _{max} :v _{min}	Total Control	1,3:1
Kanalquerschnitt	m²	2,38
unnormierter Volumenstrom q _{V,w} (t,p,f)	m³/h (t,p,f)	22.100
erweiterte Messunsicherheit	m³/h	29.176
relative erweiterte Messunsicherheit	%	132,0
Volumenstrom, normiert feucht (Norm f)	m³/h (n,f)	18.670
Volumenstrom, normiert q _{V,0d} (Norm tr)	m³/h (n,tr)	18.390

Tabelle Anhang: Angaben zu Maßnahmen zur Qualitätssicherung automatischer Messverfahren gemäß Kapitel 4, 4.2.1.9

Messtag	24.9.2024
Komponente O ₂ :	
Drift am Nullpunkt	1,0%
Drift am Referenzpunkt	0,4%

Es erfolgte eine rechnerische Berücksichtigung der Driften.

Messtag	24.9.2024
Messung	1
Messbeginn	14:55
de la constante	Geschwindigkeit
Achse / Punkt	m/s
1/1	2,5
1/2	2,5
1/3	2,5
1/4	2,6
2/1	3,1
2/2	2,5
2/3	2,5
2/4	2,5
3/1	2,9
3/2	2,6
3/3	2,5
3/4	2,5
Verhältnis	
V _{max} :V _{min}	1,3:1
V _{min}	2,5
V _{max}	3,1
V _{mittel}	2,6

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 29 von 38

Anhang A2: Auswertung der Schadstoffmessungen

A001

Tabelle Anhang: Auswertung der Staubemissionsmessungen

Firma	1	BASF			
Anlage	B306, Sulfit-Fabrik				
Messstelle	Kamin Quelle A1				
Messtag		26.09.2024	26.09.2024	26.09.2024	
Messung	Nr.	1	2	3	
Messbeginn	Uhr	14:25	15:03	15:41	
Messende	Uhr	15:01	15:39	16:17	
gemessener Sauerstoffgehalt	Vol%	20,98	20,96	21,04	
HAUPTVOLUMENSTROM					
Volumenstrom-Messung	Nr.	1	1	1	
bz. auf Normzustand (n,tr)	m³/h	9.870	9.870	9.870	
ABGESAUGTES TEILGASVOLUMEN					
Dauer der Absaugung	min	36	36	36	
Temperatur an der Gasuhr	°C	24	23	23	
statischer Druck an der Gasuhr	hPa	0	0	C	
Sondendurchmesser	mm	15	15	15	
Teilgasvolumen (t,p,tr)	m³	0,920	0,921	0,921	
Korrekturfaktor Gasuhr		1,010	1,010	1,010	
bz. auf Normzustand tr.(n,tr)	m³	0,846	0,850	0,851	
Isokinetisches Verhältnis	%	105	106	106	
MASSENKONZENTRATION- UND STROM					
Staubmasse, Filter	mg	2,67	4,73	4,85	
Staubmasse vor Filter	mg	0,09	0,15	0,16	
Staubmasse, gesamt	mg	2,76	4,88	5,01	
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	0,00	
bezogen auf das Teilgas volumen (ntr)	mg/m³	< 0,71	< 0,71	0,00	
Blindwert in Relation zum Grenzwert	%	< 3,5	< 3,5	0,0	
Blindwert in Relation zum Messwert	%	< 22	< 12	0	
Massenstrom	g/h	32,1	56,6	58,0	
Staubkonzentration					
bz. auf Normzustand trocken (n,tr)	mg/m³	3,25	5,74	5,88	
bez. auf Normzustand trocken	mg/m³	3,25	5,74	5,88	

n,tr: im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchteanteils

n,f: im Normzustand (273 K, 1013 hPa) ohne Abzug des Feuchteanteils

t,p,f: im Betriebszustand

Seite 30 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

A002

Tabelle Anhang: Auswertung der Staubemissionsmessungen

Firma		BASF				
Anlage	B306, Sulfit-Fabrik					
Messstelle	Kamin Quelle A2					
Messtag	1	26.09.2024	26.09.2024	26.09.2024		
Messung	Nr.	1	2	3		
Messbeginn	Uhr	14:25	14:59	15:32		
Messende	Uhr	14:55	15:29	16:02		
gemessener Sauerstoffgehalt	Vol%	20,92	20,92	21,02		
HAUPTVOLUMENSTROM						
Volumenstrom-Messung	Nr.	1	1	1		
bz. auf Normzustand (n,tr)	m³/h	7.750	7.750	7.750		
ABGESAUGTES TEILGASVOLUMEN						
Dauer der Absaugung	min	30	30	30		
Temperatur an der Gasuhr	°C	24	24	23		
statischer Druck an der Gasuhr	hPa	0	0	- (
Sondendurchmesser	mm	7	7			
Teilgasvolumen (t,p,tr)	m³	0,853	0,855	0,843		
Korrekturfaktor Gasuhr		1,010	1,010	1,010		
bz. auf Normzustand tr.(n,tr)	m³	0,786	0,789	0,779		
Isokinetisches Verhältnis	%	105	106	104		
MASSENKONZENTRATION- UND STROM						
Staubmasse, Filter	mg	0,51	0,57	< 0,30		
Staubmasse vor Filter	mg	< 0,11	< 0,12	< 0,07		
Staubmasse, gesamt **	mg	0,57	0,63	< 0,33		
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	0,00		
bezogen auf das Teilgasvolumen (ntr)	mg/m³	< 0,76	< 0,76	0,00		
Blindwert in Relation zum Grenzwert	%	< 3,8	< 3,8	0,0		
Blindwert in Relation zum Messwert	%	< 106	< 95			
Massenstrom	g/h	5,58	6,21	< 3,31		
Staubkonzentration bz. auf Normzustand trocken (n,tr)	mg/m³	0,71	0,80	< 0,42		
bez. auf Normzustand trocken	mg/m³	0,71	0,80	< 0,42		

n,tr: im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchteanteils

n,f: im Normzustand (273 K, 1013 hPa) ohne Abzug des Feuchteanteils

t,p,f: im Betriebszustand

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 31 von 38

A004

Tabelle Anhang: Auswertung der Staubemissionsmessungen

Firma		BASF			
Anlage	B306, Sulfit-Fabrik				
Messstelle	Kamin Quelle A4				
Messtag		24.09.2024	24.09.2024	24.09.2024	
Messung	Nr.	1	2	3	
Messbeginn	Uhr	15:22	15:54	16:24	
Messende	Uhr	15:52	16:24	16:54	
gemessener Sauerstoffgehalt	Vol%	20,85	20,84	20,83	
HAUPTVOLUMENSTROM					
Volumenstrom-Messung	Nr.	1	1	1	
bz. auf Normzustand (n,tr)	m³/h	7.270	7.270	7.270	
ABGESAUGTES TEILGASVOLUMEN					
Dauer der Absaugung	min	30	30	30	
Temperatur an der Gasuhr	°C	22	23	22	
statischer Druck an der Gasuhr	hPa	0	0	(
Sondendurchmesser	m mi	16	16	16	
Teilgasvolumen (t,p,tr)	m³	0,918	0,921	0,896	
Korrekturfaktor Gasuhr		0,993	0,993	0,993	
bz. auf Normzustand tr.(n,tr)	m³	0,826	0,826	0,805	
sokinetisches Verhältnis	%	106	106	104	
MASSENKONZENTRATION- UND STROM					
Staubmasse, Filter	mg	0,43	0,47	< 0,30	
Staubmasse vor Filter	mg	0,29	0,31	0,20	
Staubmasse, gesamt **	mg	0,72	0,78	0,50	
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	< 0,60	
bezogen auf das Teilgasvolumen (ntr)	mg/m³	< 0,73	< 0,73	< 0,75	
Blindwert in Relation zum Grenzwert	%	< 3,6	< 3,6	< 3,7	
Blindwert in Relation zum Messwert	%	< 84	< 77	< 120	
Massenstrom	g/h	6,31	6,90	4,52	
Staubkonzentration	15.24		7		
bz. auf Normzustand trocken (n,tr)	mg/m³	0,86	0,94	0,62	
bez. auf Normzustand trocken	mg/m³	0,86	0,94	0,62	

n,tr: im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchteanteils

n,f: im Normzustand (273 K, 1013 hPa) ohne Abzug des Feuchteanteils

t,p,f: im Betriebszustand

Seite 32 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

A005a

Tabelle Anhang: Auswertung der Staubemissionsmessungen

Firma		BASF			
Anlage	B306, Sulfit-Fabrik				
Messstelle	Kamin Quelle A5A				
Messtag		26.09.2024	26.09.2024	26.09.2024	
Messung	Nr.	1	2	3	
Messbeginn	Uhr	12:13	12:51	13:29	
Messende	Uhr	12:49	13:27	14:05	
gemessener Sauerstoffgehalt	Vol%	3,37	3,39	3,42	
HAUPTVOLUMENSTROM					
Volumenstrom-Messung	Nr.	1	1	1	
bz. auf Normzustand (n,tr)	m³/h	11.040	11.040	11.040	
ABGESAUGTES TEILGASVOLUMEN					
Dauer der Absaugung	min	36	36	36	
Temperatur an der Gasuhr	°C	20	23	26	
statischer Druck an der Gasuhr	hPa	0	0	(
Sondendurchmesser	m mı	18	18	18	
Teilgasvolumen (t,p,tr)	m³	1,117	1,126	1,140	
Korrekturfaktor Gasuhr		1,010	1,010	1,010	
bz. auf Normzustand tr.(n,tr)	m³	1,044	1,040	1,043	
Isokinetisches Verhältnis	%	105	104	105	
MASSENKONZENTRATION- UND STROM					
Staubmasse, Filter	mg	5,79	5,75	6,36	
Staubmasse vor Filter	mg	< 0,10	< 0,10	< 0,11	
Staubmasse, gesamt	mg	5,84	5,80	6,41	
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	0,00	
bezogen auf das Teilgas volumen (ntr)	mg/m³	< 0,57	< 0,58	0,00	
Blindwert in Relation zum Grenzwert	%	< 2,9	< 2,9	0,0	
Blindwert in Relation zum Messwert	%	< 10	< 10	(
Massenstrom	g/h	61,7	61,5	67,8	
Staubkonzentration			7 7 2	17 - 29.0	
bz. auf Normzustand trocken (n,tr)	mg/m³	5,59	5,57	6,14	
bez. auf Normzustand trocken	mg/m³	5,59	5,57	6,14	

n,tr: im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchteanteils

n,f: im Normzustand (273 K, 1013 hPa) ohne Abzug des Feuchteanteils

t,p,f: im Betriebszustand

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 33 von 38

A005b

Tabelle Anhang: Auswertung der Staubemissionsmessungen

Firma		BASF			
Anlage	B306, Sulfit-Fabrik				
Messstelle	Kamin Quelle A5b				
Messtag		26.09.2024	26.09.2024	26.09.2024	
Messung	Nr.	1	2	3	
Messbeginn	Uhr	12:12	12:50	13:30	
Messende	Uhr	12:48	13:26	14:06	
gemessener Sauerstoffgehalt	Vol%	3,34	3,34	3,23	
HAUPTVOLUMENSTROM					
Volumenstrom-Messung	Nr.	1	1	1	
bz. auf Normzustand (n,tr)	m³/h	11.330	11.330	11.330	
ABGESAUGTES TEILGASVOLUMEN					
Dauer der Absaugung	min	36	36	36	
Temperatur an der Gasuhr	°C	21	24		
statischer Druck an der Gasuhr	hPa	0	0		
Sondendurchmesser	m mı	16	16	16	
Teilgas volumen (t,p,tr)	m³	0,905	0,903	0,927	
Korrekturfaktor Gasuhr		1,010	1,010	1,010	
bz. auf Normzustand tr.(n,tr)	m³	0,842	0,832	0,929	
sokinetisches Verhältnis	%	104	103	118	
MASSENKONZENTRATION- UND STROM					
Staubmasse, Filter	mg	< 0,30	2,99	3,82	
Staubmasse vor Filter	mg	0,06	0,59	0,75	
Staubmasse, gesamt **	mg	0,36	3,58	4,57	
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	0,00	
bezogen auf das Teilgas volumen (ntr)	mg/m³	< 0,71	< 0,72	0,00	
Blindwert in Relation zum Grenzwert	%	< 3,6	< 3,6	0,0	
Blindwert in Relation zum Messwert	%	< 167	< 17		
Massenstrom	g/h	4,83	48,7	55,	
Staubkonzentration	15.20				
bz. auf Normzustand trocken (n,tr)	mg/m³	0,42	4,30	4,92	
bez. auf Normzustand trocken	mg/m³	0,42	4,30	4,92	

n,tr: im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchteanteils

n,f: im Normzustand (273 K, 1013 hPa) ohne Abzug des Feuchteanteils

t,p,f: im Betriebszustand

Seite 34 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

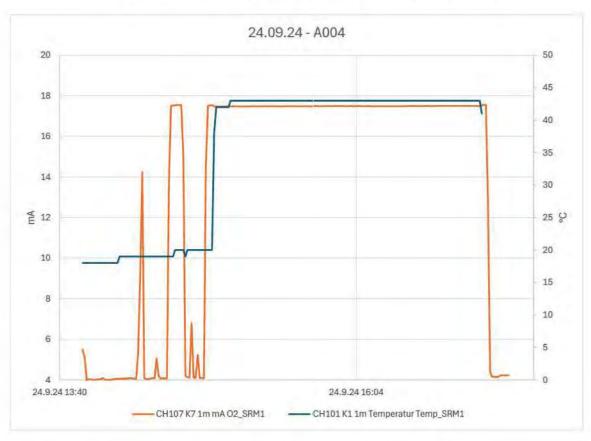
A006

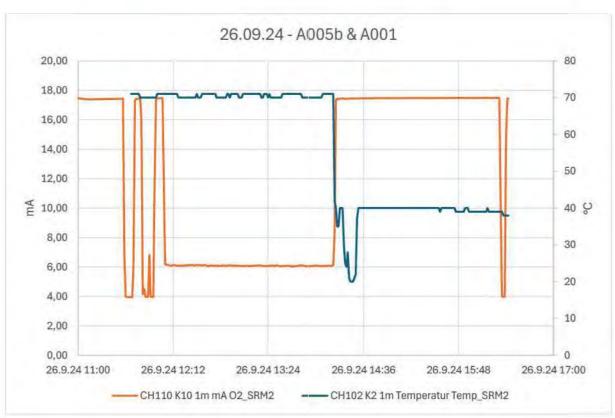
Tabelle Anhang: Auswertung der Staubemissionsmessungen

Firma		BASF			
Anlage	B306, Sulfit-Fabrik				
Messstelle	Kamin Quelle A6				
Messtag	1	24.09.2024	24.09.2024	24.09.2024	
Messung	Nr.	1	2	3	
Messbeginn	Uhr	15:12	15:53	16:29	
Messende	Uhr	15:48	16:29	17:05	
gemessener Sauerstoffgehalt	Vol%	20,97	20,89	20,91	
HAUPTVOLUMENSTROM					
Volumenstrom-Messung	Nr.	1	1	1	
bz. auf Normzustand (n,tr)	m³/h	18.390	18.390	18.390	
ABGESAUGTES TEILGASVOLUMEN					
Dauer der Absaugung	min	36	36	36	
Temperatur an der Gasuhr	°C	17	20	2	
statischer Druck an der Gasuhr	hPa	0	0		
Sondendurchmesser	m mı	15	15	18	
Teilgas volumen (t,p,tr)	m³	0,943	0,939	0,92	
Korrekturfaktor Gasuhr		1,010	1,010	1,010	
bz. auf Normzustand tr.(n,tr)	m³	0,876	0,864	0,846	
Isokinetisches Verhältnis	%	107	105	103	
MASSENKONZENTRATION- UND STROM					
Staubmasse, Filter	mg	22,22	17,33	15,75	
Staubmasse vor Filter	mg	0,44	0,34	0,31	
Staubmasse, gesamt	mg	22,66	17,67	16,06	
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	0,00	
bezogen auf das Teilgas volumen (ntr)	mg/m³	< 0,68	< 0,69	0,00	
Blindwert in Relation zum Grenzwert	%	< 6,8	< 6,9	0,0	
Blindwert in Relation zum Messwert	%	< 3	< 3	1	
Massenstrom	g/h	475	376	349	
Staubkonzentration			1 100		
bz. auf Normzustand trocken (n,tr)	mg/m³	25,87	20,44	18,99	
bez. auf Normzustand trocken	mg/m³	25,87	20,44	18,99	

n,tr: im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchteanteils

n,f: im Normzustand (273 K, 1013 hPa) ohne Abzug des Feuchteanteils

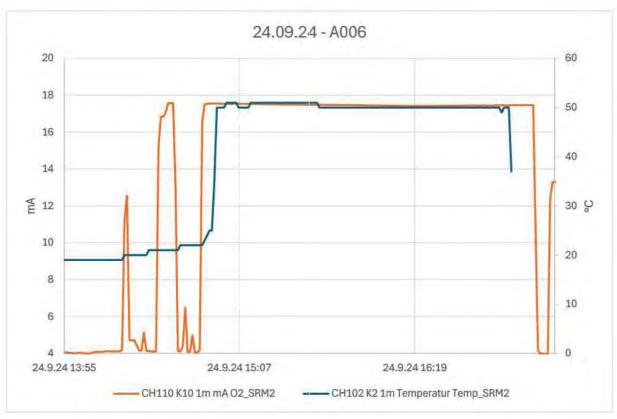

t,p,f: im Betriebszustand



Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

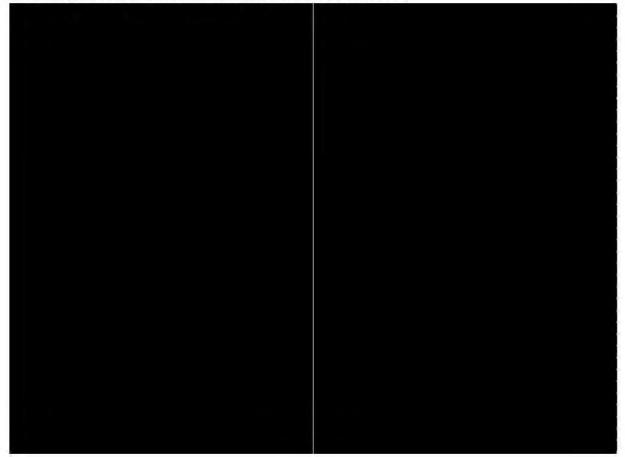
Seite 35 von 38

Anhang A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten



Seite 36 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A



Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Seite 37 von 38

Anhang A4: Aufzeichnungen des Betreibers

Seite 38 von 38

Bericht über die Durchführung von Emissionsmessungen an der Sulfite-Fabrik (B306) bei der Firma BASF SE für die Messkomponente Staub, Berichts-Nr.:EuL/21267661/A

Anhang A5: Abkürzungen

Abkürzungen

O ₂	Sauerstoff	
CO ₂	Kohlendioxid	
Staub	Gesamtstaub	

TÜV RHEINLAND ENERGY & ENVIRONMENT GMBH

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂

TÜV-Bericht Nr.: EuL/21267427/U140_A108A Mainz. 25.11.2024

www.umwelt-tuv.de

tre-service@de.tuv.com

Die TÜV Rheinland Energy & Environment GmbH ist mit der Abteilung Immissionsschutz für die Arbeitsgebiete:

- Bestimmung der Emissionen und Immissionen von Luftverunreinigungen und Emissionen von Geruchsstoffen;
- Überprüfung des ordnungsgemäßen Einbaus und der Funktion sowie Kalibrierung kontinuierlich arbeitender Emissionsmessgeräte einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung;
- Feuerraummessungen;
- Eignungsprüfung von Messeinrichtungen zur kontinuierlichen Überwachung der Emissionen und Immissionen sowie von elektronischen Systemen zur Datenauswertung und Emissionsfernüberwachung
- Bestimmung der Schornsteinhöhen und Immissionsprognosen für Schadstoffe und Geruchsstoffe;
- Bestimmung der Emissionen und Immissionen von Geräuschen und Vibrationen, Bestimmung von Schallleistungspegeln und Durchführung von Schallnessungen an Windenergieanlagen

nach DIN EN ISO/IE:C 17025 akkreditiert.

Die Akkreditierung hat die DAkkS-Registriernummer: D-PL-11120-02-00.

Die <u>auszugsweise</u> Vervielfältigung des Berichtes bedarf der schriftlichen Genehmigung.

TÜV Rheinland Energy & Environment GmbH D-51105 Köln, Am Grauen Stein, Tel: 0221 806-5200, Fax: 0221 806-1349

Seite 2 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Leerseite

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Mlesskomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 3 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂

Name der nach § 29b BlmSchG

bekannt gegebenen Stelle: TÜV Rheinland

Energy & Environment GmbH

Befristung der Bekanntgabe: 03.03.2028

Berichtsnummer / Datum: EuL/21267427/U140_A108A 25.11.2024

Dieser Bericht ersetzt den Bericht-Nr.:

EuL/21267427/U140/A108 vom

15. November 2024.

Es wurde nur der Entkokungsbetrieb beprobt, der Normalbetrieb wurde entfernt.

Betreiber: BASF SE

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

Standort: BASF SE

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

Bau U150

Equipmentnummer/

Terminzeilennummer: 4570156

Kundennummer: 1034129

Messtermin: 30.07. - 01.08.2024

Berichtsumfang: insgesamt 36 Seiten

Anhang ab Seite 24

Anlagenzuordnung: OGC-VwV

Seite 4 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Leerseite

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Mlesskomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 5 von 36

Zusammenfassung

Anlage: Anlage zur Herstellung von Stoffen oder Stoffgruppen

durch chemische, biochemische oder biologische Umwandlung in industriellem Umfang, [...] zur Herstellung

von Kohlenwasserstoffen

Quellennummer: A109

Anlagenzustand: Der Entkokungsprozess wurde mit einer Anzahl von 25

Proben begleitet.

Der angegebene maximale Messwert beschreibt den

höchsten Wert aus allen Messungen.

Ergebnisse der Messungen im Entkokungsbetrieb

Mess- komponente y	Einheit	Max. Mess- wert y _{max}	Erw. Mess- unsicherheit (Up, 0,95)	ymax - U _{0,95}	y _{max} + U _{0,95}	Grenzwert
co	mg/m³	368,7	52,5	316	421	2
Staub	mg/m³	21,43	4,6	16,8	26,0	-
O ₂ , Bezugswert	Vol%	-	, I-	2 = 0	2,₩	-

Die Emissionswerte beziehen sich auf wasserdampffreies Abgas im Normzustand (273 K, 101,3 kPa).

Die ausgewiesenen Messwerte geben die Schadstoffkonzentrationen in der gemischten Matrix aus Rauchgasen der Gasfeuerungen der Öfen A108 und A109 und dem Entkokungsgas an.

Aufgrund der Messbedingungen bei gleichzeitiger Mischung von drei Gasströmen und der ungünstigen Probenahme ist mit einem Einfluss auf die Messunsicherheit zu rechnen.

Für die kontinuierlich gemessenen Komponenten wurde der Zusatzbeitrag auf 100 % abgeschätzt, für die Staubmessungen auf 200 %.

Seite 6 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Leerseite

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 7 von 36

Inhaltsverzeichnis

		Seite
Zusamm	enfassung	5
Inhaltsve	rzeichnis	7
1 Messa	ufgabe	9
1.1	Auftraggeber:	9
1.2	Betreiber:	9
1.3	Standort:	9
1.4	Anlage:	9
1.5	Datum der Messung:	9
1.6	Anlass der Messung:	9
1.7	Aufgabenstellung:	9
1.8	Messkomponenten und Messgrößen:	9
1.9	Ortsbesichtigung vor Messdurchführung:	10
1.10	Messplanabstimmung:	10
1.11	An der Messung beteiligte Personen:	10
1.12	Beteiligte weitere Institute:	10
1.13	Fachlich Verantwortliche:	10
2 Besch	reibung der Anlage / gehandhabte Stoffe	11
2.1	Bezeichnung der Anlage:	11
2.2	Beschreibung der Anlage	11
2.3	Beschreibung der Emissionsquellen nach Betreiberangaben	12
2.4	Angabe der It. Genehmigungsbescheid möglichen Einsatzstoffe	12
2.5	Betriebszeiten nach Betreiberangaben	12
2.6	Einrichtung zur Erfassung und Minderung der Emissionen	12
3 Besch	reibung der Probenahmestelle	13
3.1	Lage des Messquerschnittes	13
3.2	Lage der Messpunkte im Messquerschnitt	14
4 Mess-	und Analysenverfahren, Geräte	15
4.1	Abgasrandbedingungen	15
4.2	Automatische Messverfahren	16
4.3	Manuelle Messverfahren für gas- und dampfförmige Emissionen	18
4.4	Messverfahren für partikelförmige Emissionen	18
4.5	Besondere hochtoxische Abgasinhaltsstoffe	18
4.6	Geruchsemissionen	18
5 Betriel	oszustand der Anlage während der Messungen	19
5.1	Produktionsanlage	19
5.2	Abgasreinigungsanlage	19
6 Zusam	menstellung der Messergebnisse und Diskussion	19
6.1	Bewertung der Betriebsbedingungen während der Messungen	19
6.2	Messergebnisse	20
6.3	Messunsicherheiten	22
6.4	Diskussion der Ergebnisse	22
7 Übersi	cht über den Anhang	23

Seite 8 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Leerseite

TÜV Rheinland Energy & Environment GmbH

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O2, Berichts-Nr.: EuL/21267427/U140_A108A

Seite 9 von 36

1 Messaufgabe

BASF SE 1.1 Auftraggeber:

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

BASF SE 1.2 Betreiber:

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

Ansprechpartner:

Telefon:

1.3 Standort: BASF SE

Carl-Bosch-Straße 38

67065 Ludwigshafen am Rhein

Bau U150

1.4 Anlage: Anlage zur Herstellung von Stoffen oder

> Stoffgruppen durch chemische, biochemische oder biologische Umwandlung in industriellem Umfang, [...] zur Herstellung von Kohlenwasserstoffen gemäß Nr. 4.1.1 G/E des An-

hangs 1 zur 4. BlmSchV

Betreiber-/Arbeitsstätten-Nr.: 8290552 (Werksgelände Ludwigshafen)

Anlagen-Nr.: 23.07

1.5 Datum der Messung: 30.07. - 01.08.2024

> Datum der letzten Messung: 08. & 11-13.12.23

2025 Datum der nächsten Messung:

1.6 Anlass der Messung: Wiederkehrende Messung im Rahmen be-

hördlicher Auflagen

1.7 Aufgabenstellung: Feststellung der Emissionen gemäß

OGC-VwV

Besonderheiten im Hinblick auf die Be-

triebsbedingungen:

Ofen A108 wurde im Entkokungsbetrieb zur Abreinigung der Spaltrohre gefahren. Es ent-

stand kein Produkt.

Das Entkokungsgas wurde in einem Sammelkamin gemeinsam mit den Rauchgasen der Feuerungseinrichtungen der Öfen A108 und

A109 abgeleitet.

Genehmigungsbehörde: Stadt Ludwigshafen am Rhein

Genehmigungsbescheid, Az.: 32-21:351Gf vom 27.09.1990

Grenzwerte: siehe Zusammenfassung

Ziffern des Bescheides: nicht zutreffend

Amtliche Messung: ja

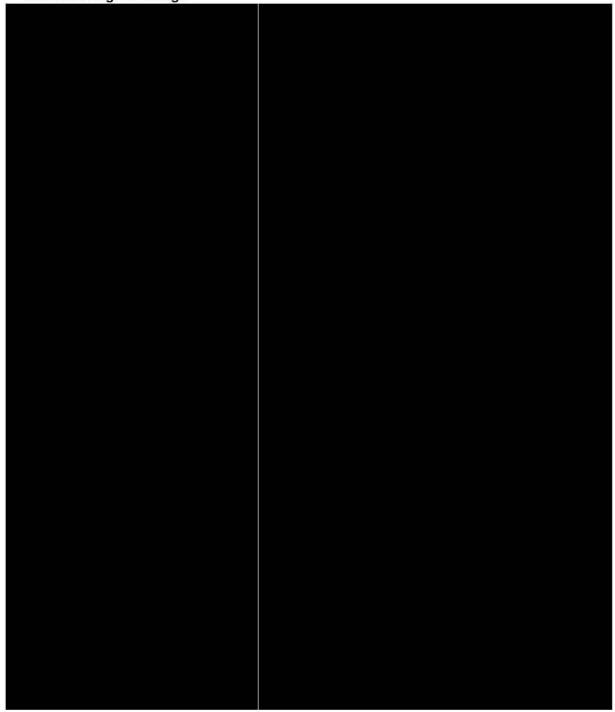
1.8 Messkomponenten und Messgrößen: CO, Staub und O2 sowie CO2

Seite 10 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stearmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

1.9	Ortsbesichtigung vor Messdurchführung:	nicht durchgeführt, weil die Messstelle aus vorherigen Messungen bereits bekannt ist.
1.10	Messplanabstimmung:	mit dem Betreiber; die länderspezifische An- meldung wurde am 19.07.2024 an die Fach- behörde versendet
1.11	An der Messung beteiligte Personen:	
1.12	Beteiligte weitere Institute:	keine
1.13	Fachlich Verantwortliche:	
	Telefon-Nr.:	
	Email-Adresse:	

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Mlesskomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A


Seite 11 von 36

2 Beschreibung der Anlage / gehandhabte Stoffe

2.1 Bezeichnung der Anlage:

Anlage zur Herstellung von Stoffen oder Stoffgruppen durch chemische, biochemische oder biologische Umwandlung in industriellem Umfang, [...] zur Herstellung von Kohlenwasserstoffen

2.2 Beschreibung der Anlage

Seite 12 von 36

2.3

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

	Quellen Nr.	A109, für die Öfen A108 & A109
	Höhe über Grund:	40 m
	UTM-Koordinaten:	32457950 5486078
	Bauausführung:	Stahl
2.4	Angabe der It. Genehmigungsbescheid	d möglichen Einsatzstoffe
2.5	Betriebszeiten nach Betreiberangaben	
2.6	Einrichtung zur Erfassung und Minder	ung der Emissionen
2.6.1	Einrichtung zur Erfassung der Emissio	onen
2.6.1.1	Art der Emissionserfassung:	geschlossenes System, Saugzugventilator
2.6.1.2	Ventilatorkenndaten, m³/h:	
2.6.1.3	Ansaugfläche in m²:	
2.6.2	Einrichtung zur Verminderung der Erni sionen:	s-
	Zyklonanlage	
	Hersteller, Typ:	BASF SE
	Baujahr:	2021
	Anzahl der Einzelzyklone:	1
	Schaltung:	nicht zutreffend
	Zyklondurchmesser:	1500 mm
	Nennleistung des Saugzugventilators:	nicht zutreffend
	Art des Staubaustrages:	Klappenschleuse
	Druckdifferenz Roh-/Reingas:	100 mbar
	Gasvolumenstrom:	max. 9,2 t/h Dampf oder 12000 Nm³/h Luft
	Wartungsintervalle:	5 Jahre
	Letzte Wartung:	2022
2.6.3	Einrichtung zur Verdünnung des Abga	
	ses:	keine

Beschreibung der Emissionsquellen nach Betreiberangaben

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Mlesskomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 13 von 36

3 Beschreibung der Probenahmestelle

3.1 Lage des Messquerschnittes

Die Messstelle befindet sich im Freien auf einer Messbühne in etwa 26 m Höhe über Grund.

gerade Einlaufstrecke: ca. 5 m gerade Auslaufstrecke: ca. 1 m Strecke bis zur Mündung: \geq 5 Dh

Empfehlung ≥ 5·Dh Einlauf und 2·Dh

Auslauf (5·Dh vor Mündung): nicht erfüllt

3.1.2 Arbeitsfläche und Messbühne Die Arbeitsfläche ist ausreichend groß und

die Messöffnungen sind gefahrlos zu erreichen. Eine ausreichende Rückenfreiheit zum Einführen der Entnahmesonden ist gegeben. Ein Wetterschutz ist sowohl an den Messöffnungen als auch am Aufstellort nach Bedarf

einzurichten.

3.1.3 Messöffnungen:

Anzahl der Messöffnungen: 2

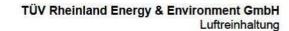
Lage der Messöffnungen: in einer Ebene, um 90 Grad versetzt

Lichter Durchmesser: 100 mm

Stutzenlänge: 350 mm (650 mm inkl. Schieber)

3.1.4 Strömungsbedingungen im Messquerschnitt

Winkel zwischen Gasstrom/Mittelachse


Abgaskanal < 15°: nicht ermittelbar keine negative lokale Strömung: nicht ermittelbar

Verhältnis von höchster zu niedrigster Ge-

schwindigkeit < 3:1: nicht ermittelbar

Mindestgeschwindigkeit (in Abhängigkeit

vom verwendeten Messverfahren): nicht ermittelbar

Seite 14 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stealmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Messbedingungen nach DIN EN 15259:

Es steht nur eine Messachse zur Verfügung. Die Empfehlungen und Anforderungen wurden auf der untersuchten Achse eingehalten Aus Gründen der Arbeitssicherheit im Umgang mit überhitztem Dampf wurde die Entnahmesonde durch Mitarbeiter der BASF SE ein- und ausgebaut und konnte zwischen den Messungen nicht aus dem Kanal entnommen werden.

Abweichungen in den Durchmessern von Messsonde und Schieber verhinderten ein ausreichend tiefes einfahren der Kombinationssonde (Abgriffe für Staub, extraktive Gasentnahme, Druck, Differenzdruck und Temperatur). Lediglich der weiter hervorstehende Abgriff für Staub erreichte den ersten Messpunkt der Messachse. Die extraktive Gasentnahme erfolgte daraufhin über die unbeheizte Absaugleitung der Staubmessung. Es stehen betreiberseitig geeignete Messeinrichtungen für die Parameter Druck und Temperatur zur Verfügung. Feuchte und Volumenstrom wurden rechnerisch anhand der Stoffströme ermittelt.

zu erwartende Auswirkungen auf das Ergebnis:

Aufgrund der Messbedingungen ist mit einem Einfluss auf die Messunsicherheit zu rechnen. Für die kontinuierlich gemessenen Komponenten wurde der Zusatzbeitrag auf 100 % abgeschätzt, für die Staubmessungen auf 200 %.

Empfehlungen und Hinweise zur Verbesserung der Messbedingungen:

Um repräsentative Ergebnisse ermitteln zu können ist ein größerer Schieber notwendig. Dazu wird empfohlen, einen zweiten Flanschadapter einzurichten.

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt:

Messpunkte je Achse:

Achsen: 1

Abstand der Messpunkte vom Kanalrand: 7 cm

3.2.2 Homogenitätsprüfung: nicht durchgeführt, nur ein Punkt erreichbar

1

TÜV Rheinland Energy & Environment GmbH

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O2, Berichts-Nr.: EuL/21267427/U140_A108A

Seite 15 von 36

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

Eine messtechnische Ermittlung der Abgasrandbedingungen ist anlagenbedingt nicht möglich.

Abweichungen in den Durchmessern von Messsonde und Schieber verhinderten ein ausreichend tiefes einfahren der Kombinationssonde (Abgriffe für Staub, extraktive Gasentnahme, Druck, Differenzdruck und Temperatur).

Es stehen betreiberseitig geeignete Messeinrichtungen für die Parameter Druck und Temperatur zur Verfügung. Feuchte und Volumenstrom wurden rechnerisch anhand der Stoffströme ermittelt.

Strömungsgeschwindigkeit 4.1.1

> Messverfahren: rechnerische Ermittlung über die Stoffströme,

> > siehe oben

4.1.2 Statischer Druck im Abgaskamin:

> Übernahme der Messdaten der Betriebsmes-Messverfahren:

> > seinrichtungen

4.1.3 Luftdruck in Höhe der Probenahmestelle

> Messeinrichtung: Greisinger / GPB 3300

4.1.4 Abgastemperatur:

> Messverfahren: Übernahme der Messdaten der Betriebsmes-

> > seinrichtungen

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

> Messverfahren: Rechnerische Ermittlung mittels Verbren-

> > nungsrechnung, siehe Anhang

Abgasdichte: 4.1.6 berechnet unter Berücksichtigung der Abgas-

bestandteile an Sauerstoff (O2), Kohlendioxid (CO₂), Stickstoff (mit 0,933 % Argon), Abgasfeuchte (Wasserdampfanteil im Abgas) sowie der Abgastemperatur und Druckverhältnisse

im Kanal.

4.1.7 Abgasverdünnung: nicht festgestellt

4.1.8 Volumenstrom

> Messverfahren: rechnerische Ermittlung über die Stoffströme,

> > siehe oben

Seite 16 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stearmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

4.2	Automatische Messverfahren		
4.2.1	Messkomponente:	Kohlenmonoxid (CO)	
4.2.1.1	Messverfahren:	Bestimmung der Masse Kohlenmonoxid – Stand Nicht-dispersive Infrarot DIN EN 15058, Mai 201	ardreferenzverfahren: spektrometrie gemäß
4.2.1.2	Analysator:	Horiba / PG 350 P-AMS DIN EN 15267-4	S Zertifizierung nach
4.2.1.3	eingestellter Messbereich in ppm:	0 - 500	
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2	
4.2.1	Messkomponente:	Sauerstoff (O ₂)	
4.2.1.1	Messverfahren:	Bestimmung der Volume Sauerstoff, Standardrefe magnetismus gemäß DIN EN 14789, Mai 201	erenzverfahren: Para-
4.2.1.2	Analysator:	Horiba / PG 350 P-AMS DIN EN 15267-4	S Zertifizierung nach
4.2.1.3	eingestellter Messbereich in Vol%:	0 - 25	
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2	
4.2.1	Messkomponente:	Kohlendioxid (CO ₂)	
4.2.1.1	Messverfahren:	NDIR / Hausverfahren in EN 15058, Mai 2017	n Anlehnung an DIN
4.2.1.2	Analysator:	Horiba / PG 350 P-AMS DIN EN 15267-4	S Zertifizierung nach
4.2.1.3	eingestellter Messbereich in Vol%:	0 - 20	
	Beschreibung 4.2.1.5 bis 4.2.1.7 für CO,	CO ₂ , O ₂	
4.2.1.5	Probenahme und Probenaufbereitung		
	Entnahmesonde:	Edelstahl, beheizt durch	Abgas
	maximale Eintauchtiefe in m:	0,7	
	Staubfilter:	Filter nach 4.4	
	Probengasleitung vor Gasaufbereitung:	unbeheizt	
	Probengasleitung vor Gasaufbereitung:	Länge in m:	20
	Probengasleitung nach Gasaufbereitung:	Länge in m:	2
	Messgasaufbereitung		
	Messgaskühler:	M & C / VC-2-SL und M & C / PSS 5	
	Temperatur geregelt auf:	≤ 4°C	

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 17 von 36

4.2.1.6 Überprüfung von Null- und Referenzpunkt mit Prüfgasen

Nullgas: N₂ N₂

Mischprüfgas: NO, CO, CO₂ in N₂ O₂ Außenluft Konzentration: NO 530 mg/m³ 20,94 Vol.-%

CO 505 mg/m³ CO₂ 15,05 Vol.-%

Unsicherheit: in % 2

Flaschen ID-Nummer: 17447

Hersteller: Nippon Gases
Herstelldatum: 02.06.2023

Stabilitätsgarantie in Monaten: 36 rückführbar zertifiziert: ja

Überprüfung des Zertifikates durch: TÜV Rheinland am: 07.11.2023

Prüfgas und Nullgas durch das gesamte Probenahmesystem incl. Sonde und

Messgasaufbereitung aufgegeben: ja ja

4.2.1.7 Einstellzeit des ges. Messaufbaus in s: <60 <60

(Prüfgas über die Entnahmesonde)

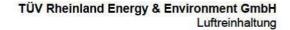
4.2.1.8 Messwerterfassungssystem: Yokogawa / DX1012

Erfassungsprogramm (Software): Yokogawa / Excel

4.2.1.9 Maßnahmen zur Qualitätssicherung

Ergebnis der Überprüfung des Nullpunkts und des Referenzpunkts nach der Messung: 30.07.2024

Komponente	Drift am Nullpunkt	Drift am Referenzpunkt			
СО	< 2,0 %	< 5,0 %			
O ₂	< 2,0 %	< 2,0 %			
CO ₂	< 2,0 %	< 2,0 %			


31.07.2024

Komponente	Drift am Nullpunkt	Drift am Referenzpunkt
СО	< 2,0 %	< 2,0 %
O ₂	< 2,0 %	< 2,0 %
CO ₂	< 2,0 %	< 5,0 %

01.08.2024

Komponente	Drift am Nullpunkt	Drift am Referenzpunkt
СО	< 2,0 %	< 2,0 %
O ₂	< 2,0 %	< 2,0 %
CO ₂	< 2,0 %	< 2,0 %

Es erfolgte eine rechnerische Berücksichtigung der Null- und Referenzpunktdrift

Seite 18 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stealmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen nicht zutreffend

4.4 Messverfahren für partikelförmige Ernissionen

4.4.1 Messkomponente: Gesamtstaub

4.4.1.1 Messverfahren: Ermittlung der Staubmasse bei geringen

Staubgehalten;

manuelles gravimetrisches Verfahren gemäß

DIN EN 13284, Teil 1, Februar 2018

4.4.1.2 Probenahme und Probenaufbereitung

Rückhaltesystem für partikelförmige Stoffe

Filtergerät: Planfilterkopfgerät

Anordnung: Outstack mit Krümmer zwischen Entnahme-

sonde und Filtergehäuse

Filtrationstemperatur in °C: ca. 220 °C

Wirkdurchmesser Entnahmesonde: siehe Tabelle, Anhang 2

Material Entnahmesonde: Titan

Material Absaugrohr: Titan

Material Filter: Quarzfaser

Filterdurchmesser: 50 mm

Absorptionssysteme für filtergängige Stoffe: nicht zutreffend

Absaugeinrichtung: Drehschieberpumpe, mind. 6 m³/h

mit Gaszähler G4

4.4.1.3 Behandlung der Filter und der Ablagerungen

Trocknungstemperatur / -zeit

vor der Beaufschlagung: 300 °C / mind. 1 h nach der Beaufschlagung: 160 °C / mind. 1 h

Rückgewinnung von Ablagerungen

vor dem Filter: nach der Messung
Konditionierung im Wägeraum (vor / nach): 24 h / 24 h (Exsikkator)

Waage / Hersteller: XPE 205 / Mettler Toledo

Standort Analysenlabor: Köln

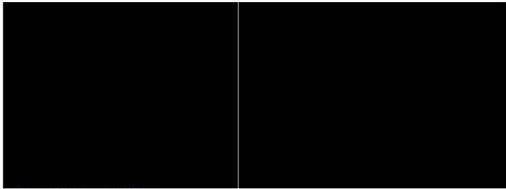
4.4.1.4 Aufbereitung und Analyse der

Filter und Absorptionslösungen: nicht zutreffend

Die Angaben zur Einhaltung der isokinetischen Bedingungen finden sich in Anhang 2.

4.5 Besondere hochtoxische Abgasinhaltsstoffe nicht zutreffend

4.6 Geruchsemissionen nicht zutreffend



Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 19 von 36

5 Betriebszustand der Anlage während der Messungen

5.1 Produktionsanlage

5.2 Abgasreinigungsanlage

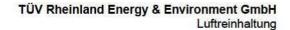
Betriebsdaten Mechanische Abgasreinigung, keine Be-

triebsanzeigen vorhanden

emissionsbeeinflussende Parameter: nicht zutreffend

Besonderheiten der Abgasreinigung: keine

Abweichungen von genehmigter oder be-


stimmungsgemäßer Betriebsweise: nicht festgestellt

besondere Vorkommnisse: keine

6 Zusammenstellung der Messergebnisse und Diskussion

6.1 Bewertung der Betriebsbedingungen während der Messungen

Seite 20 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stearmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

6.2 Messergebnisse

6.2.1 Ergebnisse der Emissionsmessungen für Gesamtstaub

Messtag	Messung	ng Uhrzeit		Uhrzeit Gesamtstaub- konzentration (n,tr)		Gesamtstaub- konzentration (n,tr,korr)	erw. MU (n,tr)	Gesamtstaub- Massenstrom	
		von	bis			Umgerrechnet auf Beitrag von Zyklon	U _{0,95}		
	#			mg/m³	mg/m³	mg/m³	mg/m³	kg/h	
30.07.24	1	13:25	13:55	5,16	4,51	31,2	1	0,26	
30.07.24	2	14:03	14:33	5,75	5,01	35,0	1,2	0,29	
30.07.24	3	14:45	15:15	8,80	7,68	53,5	1,8	0,44	
30.07.24	4	15:27	15:57	17,45	15,2	105,4	3,8	0,86	
30.07.24	5	16:02	16:32	21,43	18,7	129,5	4,6	1,1	
30.07.24	6	16:40	17:10	16,84	14,7	101,9	3,6	0,83	
30.07.24	7	17:21	17:51	11,24	9,80	67,3	2,4	0,55	
30.07.24	8	18:02	18:32	8,41	7,34	50,3	1,8	0,41	
30.07.24	9	18:39	19:09	6,38	5,57	38,3	1,2	0,31	
30.07.24	10	19:17	19:47	4,49	3,92	27,0	0,8	0,22	
30.07.24	11	19:51	20:21	2500.5	Jan			2-3%	
30.07.24	12	20:33	21:03						
30.07.24	13	21:10	21:40	2,77	2,42	16,7	0,6	0,14	
30.07.24	14	21:44	22:14	1,35	1,18	8,1	0,2	0,066	
30.07.24	15	22:23	22:53	1,08	0,94	6,5	0,2	0,053	
30.07.24	16	22:58	23:28			1000.00		3013.030	
31.07.24	17	0:07	0:37	0,77	0,67	4,6	0,18	0,038	
31.07.24	18	9:24	9:54	0,77	0,67	4,6	0,18	0,038	
31.07.24	19	10:10	10:40	1,41	1,23	6,6	0,2	0,069	
31.07.24	20	12:01	12:31	1,11	0,97	5,2	0,2	0,054	
31.07.24	21	14:01	14:31	2,87	2,52	12,2	0,6	0,14	
31.07.24	22	16:00	16:30	4,46	3,90	17,7	0,8	0,22	
01.08.24	23	8:48	9:18	1,56	1,37	9,0	0,2	0,074	
01.08.24	24	9:26	9:56	0,81	0,72	4,9	0,2	0,039	
01.08.24	25	10:03	10:33	0,82	0,72	4,0	0,2	0,039	

Die Umrechnung auf den Beitrag des Zyklons erfolgte auf Grundlage der Massenströme unter der Annahme, dass der Zyklon alleine alle signifikanten Beiträge liefert.

Bei den Messungen 11,12 und 16 sind Kontaminationen der Filter aufgetreten. Eine Angabe von Messwerten ist nicht möglich. Näheres hierzu findet sich im Kapitel 6.4.

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 21 von 36

6.2.2 Ergebnisse der Emissionsmessungen für CO

Messtag	Messung	Uhr	zeit	Kohlenmonoxid- konzentration (n,tr)	Kohlenmonoxid- konzentration (n,f)	Kohlenmonoxid- konzentration (n,tr,korr)	erw. MU (n,tr)	Kohlenmonoxid- Massenstrom
	#	von	bis	mg/m³	mg/m³	Umgerrechnet auf Beitrag von Zyklon mg/m³	U _{0,95} mg/m³	kg/h
30.07.24	1	13:25	13:55	294,4	257,0	1779,3	41,7	15
30.07.24	2	14:03	14:33	279,1	243,2	1696,7	39,6	14
30.07.24	3	14:45	15:15	292,8	255,4	1779,6	41,7	15
30.07.24	4	15:27	15:57	368,70	321,9	2227,2	52,5	18
30.07.24	5	16:02	16:32	354,0	308,7	2138,4	50,4	17
30.07.24	6	16:40	17:10	294,4	256,5	1781,7	41,7	15
30.07.24	7	17:21	17:51	240,0	209,3	1436,6	34,2	12
30.07.24	8	18:02	18:32	193,5	168,8	1157,5	28,2	9,4
30.07.24	9	18:39	19:09	146,6	128,0	879,9	21,6	7,2
30.07.24	10	19:17	19:47	106,8	93,1	642,8	15,6	5,2
30.07.24	11	19:51	20:21	80,9	70,6	486,0	12,0	4,0
30.07.24	12	20:33	21:03	55,0	48,0	331,1	8,1	2,7
30.07.24	13	21:10	21:40	43,1	37,6	259,9	6,3	2,1
30.07.24	14	21:44	22:14	29,7	25,9	178,6	4,5	1,5
30.07.24	15	22:23	22:53	19,9	17,4	119,9	2,7	0,98
30.07.24	16	22:58	23:28	15,7	13,7	94,6	2,1	0,78
31.07.24	17	0:07	0:37	14,6	12,7	87,8	1,8	0,72
31.07.24	18	9:24	9:54	11,6	10,2	69,6	0,9	0,57
31.07.24	19	10:10	10:40	19,0	16,6	89,4	1,8	1,0
31.07.24	20	12:01	12:31	22,8	20,0	107,3	2,1	1,2
31.07.24	21	14:01	14:31	30,7	26,9	129,9	3,0	1,7
31.07.24	22	16:00	16:30	29,5	25,9	116,9	2,7	1,7
01.08.24	23	8:48	9:18	3,1	2,7	17,9	0,3	0,18
01.08.24	24	9:26	9:56	2,6	2,3	15,6	0,2	0,12
01.08.24	25	10:03	10:33	<2	2	<10	0,2	<0,10

Die Umrechnung auf den Beitrag des Zyklons erfolgte auf Grundlage der Massenströme unter der Annahme, dass der Zyklon alleine alle signifikanten Beiträge liefert.

Die Einzelergebnisse und Messprotokolle befinden sich im Anhang.

Seite 22 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stealmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

6.3 Messunsicherheiten

Angaben unter der Zusammenfassung auf Seite 5 und im Kapitel 6.2.

Die Messunsicherheiten werden bei allen Komponenten rechnerisch ermittelt. Hierbei werden die Vorgaben der komponentenspezifischen Normen berücksichtigt. Bei diskontinuierlich gemessenen Komponenten ist die Messunsicherheit eine Kombination der Messunsicherheiten von Probenahme und Analytik.

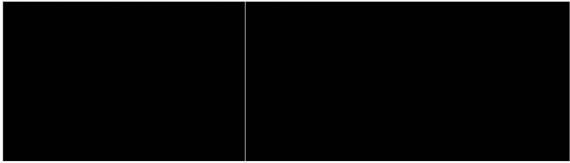
Aufgrund der Messbedingungen bei gleichzeitiger Mischung von drei Gasströmen und der ungünstigen Probenahme ist mit einem Einfluss auf die Messunsicherheit zu rechnen.

Für die kontinuierlich gemessenen Komponenten wurde der Zusatzbeitrag auf 100 % abgeschätzt, für die Staubmessungen auf 200 %.

6.4 Diskussion der Ergebnisse

Die Anlagenauslastung ist anhand der Luft- und Dampfmengen nachvollziehbar.

Unter Berücksichtigung der Messgenauigkeit der angewandten Messverfahren und der vorgefundenen Betriebsweise der Anlage sind die Ergebnisse plausibel.


Das Entkokungsgas wird im Kamin mit den Verbrennungsgasen der Gasfeuerungen der Öfen A108 und A109 vermischt. Die mithilfe der Stoffströme rückgerechneten Schadstoffkonzentrationen aus der reinen Entkokung sind in den Tabellen 6.2.1 und 6.2.2, sowie der grafischen Darstellung in Anhang A3 informativ beigefügt.

Der Volumenstrom und die Feuchte wurde aus den vom Anlagenbetreiber zur Verfügung gestellten Brenngasdurchsätzen, der eingesetzten Dampf- und Luftmengen in Verbindung mit den Sauerstoffkonzentrationen rechnerisch ermittelt.

Bei den Messungen 11,12 und 16 sind Kontaminationen der Staubfilter aufgetreten. Die Messwerte sind unplausibel. Hier können die Erwartungswerte ggf. über die ermittelten Messwerte vor und nach den Messungen 11, 12 und 16 abgeschätzt werden.

Die Prüfergebnisse beziehen sich auf die untersuchte Anlage im beschriebenen Zustand.

Abteilung Immissionsschutz / Luftreinhaltung (EuL)

EuL/21267427/U140 A108A

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 23 von 36

7 Übersicht über den Anhang

A1: Abgasrandbedingungen

A2: Auswertung der Schadstoffmessungen

A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten

A4: Grafische Darstellung des zeitlichen Verlaufs der Schadstoffkonzentrationen

A5: Aufzeichnungen des Betreibers

A6: Berechnungsgrundlagen

A7: Abkürzungen

Seite 24 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stearmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Anhang A1: Abgasrandbedingungen

Firma	BASE							
Anlage	Steamcrack	or 2	77					
3		El Z						
Messstelle	A108/A109	20.07.2024	20 07 2024	20 07 2024	20 07 2024	20 07 2024	20.07.2024	20.07.202
Messtag	- -	30.07.2024	30.07.2024	30.07.2024	30.07.2024	30.07.2024	30.07.2024	30.07.2024
Messung	Nr.	1	2	3	4	5	6	7
Betriebszustand der Anlage		MB						
Messbeginn	Uhr	13:25	14:03	14:45	15:27	16:02	16:40	17:21
Mittlere Abgastemperatur	°C	303	299	305	319	326	322	322
desgleichen absolut	K	576	572	578	592	599	595	595
Luftdruck	hPa	1003	1003	1003	1003	1003	1003	1003
statische Druckdifferenz	ΔhPa	112	107	102	98	95	96	98
absoluter Druck	hPa	1115	1110	1105	1101	1098	1099	1101
Sauerstoffkonzentration	Vol%	8,6	8,4	8,5	8,6	8,5	8,4	8,5
Kohlendioxidkonzentration	Vol%	6,7	6,8	6,7	6,7	6,7	6,7	6,7
Abgasfeuchte (f _f) *	m²/m²	0,127	0,129	0,128	0,127	0,128	0,129	0,128
Wassergehalt bez. auf trockenes Abgas	g/m²	117,0	118,8	117,9	117,0	117,9	118,8	117,9
Dichte (n,f)	kg/m²	1,254	1,254	1,254	1,254	1,254	1,253	1,254
Dichte Kanalzustand (t,p,f)	kg/m²	0,654	0,656	0,646	0,629	0,619	0,623	0,625
Mittlerer Wurzelwert d. dyn. Druck	√Pa	-	-	-	-	-	-	-
mittlere Gasgeschw indigkeit	m/s	7,9	7,9	8,1	8,2	8,4	8,3	8,2
Kanalquerschnitt	m²	3,801	3,801	3,801	3,801	3,801	3,801	3,801
Faktor Volumenstrommessung		1	1	1	1	1	1	1
Hauptvolumenstrom (t,p,f)	m²/s	30,2	30,2	30,7	31,3	31,8	31,6	31,2
desgleichen stündlich (t,p,f)	m²/h	109.000	109.000	110.000	113.000	114.000	114.000	112.000
desgleichen (n,f)	m²/h	56.700	56.900	56.800	56.500	56.500	56.600	56.000
desgleichen (n,tr)	m²/h	49.500	49.600	49.600	49.300	49.300	49.300	48.800

^{*} adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert

n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

Firma	BASF								
Anlage	Steamcracker 2								
Messstelle	A108/A109								
Messtag		30.07.2024	9	3	3				
Messung	Nr.	8	9	10	11	12	13	14	
Betriebszustand der Anlage		MB	MB	MB	MB	MB	MB	MB	
Messbeginn	Uhr	18:02	18:39	19:17	19:51	20:33	21:10	21:44	
Mittlere Abgastemperatur	°C	319	318	314	313	310	308	307	
desgleichen absolut	K	592	591	587	586	583	581	580	
Luftdruck	hPa	1003	1003	1003	1003	1003	1003	1003	
statische Druckdifferenz	ΔhPa	98	97	98	99	102	103	103	
absoluter Druck	hPa	1101	1100	1101	1102	1105	1106	1106	
Sauerstoffkonzentration	Vol%	8,5	8,6	8,5	8,5	8,5	8,5	8,6	
Kohlendioxidkonzentration	Vol%	6,7	6,7	6,7	6,7	6,7	6,7	6,7	
Abgasfeuchte (f _f) *	m²/m²	0,128	0,127	0,128	0,128	0,128	0,128	0,127	
Wassergehalt bez. auf trockenes Abgas	g/m²	117,9	117,0	117,9	117,9	117,9	117,9	117,0	
Dichte (n,f)	kg/m³	1,254	1,254	1,254	1,254	1,254	1,254	1,254	
Dichte Kanalzustand (t,p,f)	kg/m²	0,629	0,630	0,633	0,636	0,640	0,643	0,644	
Mittlerer Wurzelwert d. dyn. Druck	√Pa	Œ	-		-	-	-	-	
mittlere Gasgeschw indigkeit	m/s	8,1	8,2	8,1	8,1	8,1	8,0	8,0	
Kanalquerschnitt	m²	3,801	3,801	3,801	3,801	3,801	3,801	3,801	
Faktor Volumenstrommessung		1	1	1	1	1	1	1	
Hauptvolumenstrom (t,p,f)	m²/s	31,0	31,0	30,9	30,8	30,6	30,6	30,4	
desgleichen stündlich (t,p,f)	m²/h	111.000	112.000	111.000	111.000	110.000	110.000	110.000	
desgleichen (n,f)	m²/h	55.900	56.100	56.200	56.200	56.300	56.400	56.300	
desgleichen (n,tr)	m²/h	48.700	48.900	49.000	49.000	49.100	49.200	49.100	

^{*} adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert

t,p,f = Betriebszustand

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas

t,p,f = Betriebszustand

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas

n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

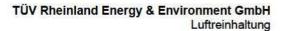
Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 25 von 36

Firma	BASE							
Anlage	Steamcracker 2							
Messstelle	45.000000000000000000000000000000000000	ACCIONATION OF THE PARTY OF THE						
Messtag	A108/A109 30.07.2024 30.07.2024 31.07.202							
Wesstag	-1	30.07.20.24	30.01.2024	31.07.202				
Messung	Nr.	15	16	17				
Betriebszustand der Anlage		MB	MB	MB				
Messbeginn	Uhr	22:23	22:58	0:07				
Mittlere Abgastemperatur	°C	307	309	311				
desgleichen absolut	K	580	582	584				
Luftdruck	hPa	1003	1003	1003				
statische Druckdifferenz	∆ hPa	103	102	103				
absoluter Druck	hPa	1106	1105	1106				
Sauerstoffkonzentration	Vol%	8,6	8,6	8,6				
Kohlendioxidkonzentration	Vol%	6,7	6,7	6,6				
Abgasfeuchte (f _f) *	m³/m³	0,127	0,127	0,127				
Wassergehalt bez. auf trockenes Abgas	g/m³	117,0	117,0	117,0				
Dichte (n,f)	kg/m³	1,254	1,254	1,254				
Dichte Kanalzustand (t,p,f)	kg/m³	0,645	0,642	0,640				
Mittlerer Wurzelw ert d. dyn. Druck	√Pa		2	3/4%				
mittlere Gasgeschw indigkeit	m/s	8,0	8,1	8,1				
Kanalquerschnitt	m²	3,801	3,801	3,801				
Faktor Volumenstrommessung	111	1	1	1				
Hauptvolumenstrom (t,p,f)	m³/s	30,5	30,6	30,7				
desgleichen stündlich (t,p,f)	m²/h	110.000	110.000	110.000				
desgleichen (n,f)	m³/h	56.400	56.400	56.300				
desgleichen (n,tr)	m²/h	49.200	49.300	49.200				

^{*} adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas


Firma	BASF								
Anlage	Steamcracker 2								
Messstelle	A 108/A 109								
Messtag	andrew position work	31.07.2024	31.07.2024	31.07.2024	31.07.2024	31.07.2024			
Messung	Nr.	18	19	20	21	22			
Betriebszustand der Anlage		MB	MB	MB	MB	MB			
Messbeginn	Uhr	9:24	10:10	12:01	14:01	16:00			
Mittlere Abgastemperatur	°C	315	314	317	316	315			
desgleichen absolut	K	588	587	590	589	588			
Luftdruck	hPa	1003	1000	1000	1000	1000			
statische Druckdifferenz	Δ hPa	103,5	137	137	179	212			
absoluter Druck	hPa	1107	1137	1137	1179	1212			
Sauerstoffkonzentration	Vol%	9,2	9,0	9,0	9,1	9,2			
Kohlendioxidkonzentration	Vol%	6,3	6,4	6,4	6,4	6,3			
Abgasfeuchte (f _f) *	m³/m³	0,122	0,124	0,124	0,123	0,122			
Wassergehalt bez. auf trockenes Abgas	g/m³	111,7	113,5	113,5	112,6	111,7			
Dichte (n,f)	kg/m³	1,255	1,255	1,255	1,255	1,255			
Dichte Kanalzustand (t,p,f)	kg/m³	0,636	0,656	0,652	0,678	0,697			
Mittlerer Wurzelw ert d. dyn. Druck	√Pa	(4)	2	823	142	2			
mittlere Gasgeschw indigkeit	m/s	8,1	8,4	8,4	8,4	8,5			
Kanalquerschnitt	m²	3,801	3,801	3,801	3,801	3,801			
Faktor Volumenstrommessung		1	1	1	1	1			
Hauptvolumenstrom (t,p,f)	m³/s	30,8	32,0	31,9	32,0	32,2			
desgleichen stündlich (t,p,f)	m³/h	111.000	115.000	115.000	115.000	116.000			
desgleichen (n,f)	m³/h	56.300	60.100	59.800	62.200	64.300			
desgleichen (n,tr)	m²/h	49,400	52,700	52.400	54.600	56.500			

^{*} adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert

t,p,f = Betriebszustand

t,p,f = Betriebszustand n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas

n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

Seite 26 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stearmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Berechnung des Hauptvolumenstroms im Kanal:								
Firma	BASF							
Anlage	Steamcrack	eamcracker 2						
Messstelle	A 108/A 109	9						
Messtag	2207	01.08.20.24	01.08.2024	01.08.2024				
Messung	Nr.	23	24	25				
Betriebszustand der Anlage		MB	MB	MB				
Messbeginn	Uhr	8:48	9:26	10:03				
Mittlere Abgastemperatur	°C	315	315	314				
desgleichen absolut	K	588	588	587				
Luftdruck	hPa	1000	1000	1003				
statische Druckdifferenz	Δ hPa	105	104	131				
absoluter Druck	hPa	1105	1104	1134				
Sauerstoffkonzentration	Vol%	9,5	9,4	9,4				
Kohlendioxidkonzentration	Vol%	6,1	6,2	6,2				
Abgasfeuchte (f _f) *	m³/m³	0,119	0,120	0,120				
Wassergehalt bez. auf trockenes Abgas	g/m³	109,1	109,9	109,9				
Dichte (n,f)	kg/m³	1,256	1,256	1,256				
Dichte Kanalzustand (t,p,f)	kg/m³	0,636	0,635	0,654				
Mittlerer Wurzelwert d. dyn. Druck	√Pa	-	-	32				
mittlere Gasgeschw indigkeit	m/s	7,8	8,1	8,3				
Kanalquerschnitt	m²	3,801	3,801	3,801				
Faktor Volumenstrommessung		1	1	1				
Hauptvolumenstrom (t,p,f)	mª/s	29,6	30,8	31,7				
desgleichen stündlich (t,p,f)	m²/h	107.000	111.000	114.000				
desgleichen (n,f)	m²/h	54.000	56.100	59.500				
desgleichen (n,tr)	m³/h	47.600	49.400	52.300				

 $[\]mbox{^*}$ adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert t,p,f = Betriebszustand

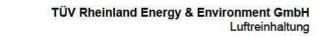
n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas

n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.: EuL/21267427/U140_A108A

Seite 27 von 36

Anhang A2: Auswertung der Schadstoffmessungen


Tabelle Anhang: Auswertung der Staubemissionsmessungen (Teil 1/5)

Firma		BASF	- 8					
Anlage		Steam cracker 2	2					
Messstelle		A108/A109						
Messtag		30.07.2024	30.07.2024	30.07.2024	30.07.2024	30.07.2024	30.07.2024	30.07.202
Messung	Nr.	1	2	3	4	5	6	7
Messbeginn	Uhr	13:25	14:0:3	14:45	15:27	16:02	16:40	17:21
Messende	Uhr	13:55	14:3:3	15:15	15:57	16:32	17:10	17:51
HAUPTVOLUMENSTROM			22					
Temperatur (im Mittel)	°C	303	299	305	319	326	322	322
desgleichen absolut	K	576	572	578	592	599	595	595
Barometerstand	hPa	1003	1003	1003	1003	1003	1003	1003
statische Druckdifferenz	hPa	112	107	102	98	95	96	98
absoluter Druck im Kanal	hPa	1115	1110	1105	1101	1098	1099	1101
Sauerstoffkonzentration	Vol%	8,6	8,4	8,5	8,6	8,5	8,4	8,5
Kohlendioxidkonzentration	Vol%	6,7	6,8	6,7	6,7	6,7	6,7	6,7
Feuchte (n,f)	m³/m³	0,127	0,129	0,128	0,127	0,128	0,129	0,128
Wassergehalt bez. auf trockenes Abgas	g/m³	117,0	118,8	117,9	117,0	117,9	118,8	117,9
Dichte (n,f)	kg/m³	1,254	1,254	1,254	1,254	1,254	1,253	1,254
Dichte (t,p,f)	kg/m³	0,654	0,656	0,646	0,629	0,619	0,623	0,625
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	765	8-2	0.41	3-	-	140.	(4)
Mittlere Gasgeschwindigkeit	m/s	7,9	7,9	8,1	8,2	8,4	8,3	8,2
Kanalquerschnitt	m²	3,80	3,80	3,80	3,80	3,80	3,80	3,80
Hauptvolumenstrom (t,p,f)	m³/s	30.2	30,2	30.7	31,3	31,8	31,6	31,2
desgleichen stündlich (t,p,f)	m³/h	109.000	109.000	110.000	113.000	114.000	114.000	112.000
bz. auf Norm zustand fe.(n,f)	m³/h	56,700	56.900	56.800	56.500	56.500	56.600	56.000
bz_auf Norm zustand tr.(n,tr)	m³/h	49.500	49.600	49.600	49.300	49.300	49.300	48.800
ABGESAUGTES TEILGASVOLUMEN								
Aktive reale Messdauer	h:mm	00:30	00:30	00:30	00:30	00:30	00:30	00:30
Temperatur an der Gasuhr	°C	34	37,2!5	35,625	38,125	41,25	43,75	42,625
statischer Druck an der Gasuhr	hPa	0	0	0	0	0	0	0
Sondendurchmesser	mm	9	9	9	9	9	9	9
Teilgas volumen (t.p.tr)	m³	0,854	0,88:2	0,879	0,876	0,903	0,898	1,000
Korrekturfaktor der Gasuhr		1,001	1,001	1,001	1,001	1,001	1,001	1,001
bz auf Normzustand tr.(n,tr)	m³	0,753	0,769	0,771	0,762	0,778	0,767	0,857
Isokinetisches Verhältnis	%	182	185	186	185	189	186	210
MASSENKONZENTRATION- UND STROM								
Staubmasse, Filt <mark>e</mark> r	mg	3,6	4,1	6,5	13,0	16,3	12,6	9,3
Staubmasse vor Filter	mg	0,33	0,33	0,33	0,33	0,33	0,33	0,33
Staubmasse, gesamt	mg	3,88	4,4	6,8	13,3	16,7	12,9	9,6
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	< 0,60	< 0,60	< 0,60	< 0,60	< 0,60
bezogen auf das Teilgas volumen (Norm, tr)	mg/m³	< 0,80	< 0,78	< 0,78	< 0,79	< 0,77	< 0,78	< 0,70
Blindwert in Relation zum Messwert	%	< 15	< 14	< 9	< 5	< 4	< 5	< 6
Sauerstoffgehalt im Abgas	Vol%	8,56	8,37	8,52	8,54	8,48	8,38	8,46
Massenstrom	kg/h	0,26	0,29	0,44	0,86	1,1	0,83	0,55
Staubkonzentration (n,f)	mg/m³	4,51	5,01	7,68	15,2	18,7	14,7	9,80
Staubkonzentration (n,tr)	mg/m³	5,16	5,75	8,80	17,5	21,4	16.8	11,2

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,f = Betriebszustand

tp,tr = Gasuhrzustand nach Abgastrocknung n,tr // n,f = bezogen auf Normzustand (273 K, 1013 hPa), trockenes Abgas // feuchtes Abgas

Seite 28 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stearmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Tabelle Anhang: Auswertung der Staubemissionsmessungen (Teil 2/5)

Firma		BASF						
Anlage		Steam cracker:	2					
Messstelle		A108/A109						
Messtag		30.07.2024	30.07.2024	30.07.2024	30.07.2024	30.07.2024	30.07.2024	30.07.202
Messung	Nr.	8	9	10	11	12	13	14
Messbeginn	Uhr	18:02	18:39	19:17	19:51	20:33	21:10	21:44
Messende	Uhr	18:32	19:09	19:47	20:21	21:03	21:40	22:14
HAUPTVOLUMENSTROM			19					
Temperatur (im Mittel)	°C	319	319	319	319	319	319	319
desgleichen absolut	K	592	592	592	592	592	592	592
Barometerstand	hPa	1003	1003	1003	1003	1003	1003	1003
statische Druckdifferenz	hPa	98	98	98	98	98	98	98
absoluter Druck im Kanal	hPa	1101	1101	1101	1101	1101	1101	1101
Sauerstoffkonzentration	Vol%	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Kohlendioxidkonzentration	Vol%	6,7	6,7	6,7	6,7	6,7	6,7	6,7
Feuchte (n,f)	m³/m³	0,128	0,128	0,128	0,128	0,128	0,128	0,128
Wassergehalt bez. auf trockenes Abgas	g/m³	117,9	117,9	117,9	117,9	117,9	117,9	117,9
Dichte (n,f)	kg/m³	1,254	1,254	1,254	1,254	1,254	1,254	1,254
Dichte (t,p,f)	kg/m³	0,629	0,629	0,629	0,629	0,629	0,629	0,629
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	: e:		-	(-		-	
Mittlere Gasgeschwindigkeit	m/s	8,1	8,1	8,1	8,1	8,1	8,1	8,1
Kanalquerschnitt	m²	3,80	3,80	3,80	3,80	3,80	3,80	3,80
Hauptvolumenstrom (t,p,f)	m³/s	31,0	31,0	31,0	31,0	31,0	31,0	31,0
desgleichen stündlich (t,p,f)	m³/h	111.000	111.000	111.000	111.000	111.000	111.000	111.000
bz. auf Norm zustand fe.(n,f)	m³/h	55.900	55.900	55.900	55.900	55.900	55.900	55.900
bz. auf Norm zustand tr.(n,tr)	m³/h	48.700	48.700	48.700	48.700	48.700	48.700	48.700
ABGESAUGTES TEILGASVOLUMEN		,,				775		
Aktive reale Messdauer	h:mm	00:30	00:30	00:30	00:30	00:30	00:30	00:30
Temperatur an der Gasuhr	°C	38,75	39	40	38,5	36,625	33,75	31,625
statischer Druck an der Gasuhr	hPa	0	0	0	0	0	0	0
Sondendurchmesser	mm	9	9	9	9	9	9	9
Teilgasvolumen (t,p,tr)	m³	1,017	0,94	0,988	0,962	1,056	0,901	0,964
Korrekturfaktor der Gasuhr		1,001	1,001	1,001	1,001	1,001	1,001	1,001
bz. auf Normzustand tr.(n,tr)	m³	0,883	0,815	0,854	0,836	0,923	0,795	0,856
Isokinetisches Verhältnis	%	216	200	209	205	226	195	210
MASSENKONZENTRATION- UND STROM								
Staubmasse, Filter	mg	7,1	4,9	3,5	0,8	14,2	1,9	0,8
Staubmasse vor Filter	mg	0,33	0,33	0,33	0,33	0,33	0,33	0,33
Staubmasse, gesamt	mg	7,42	5,2	3,8	1,1	14,6	2,2	1,2
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	< 0,60	< 0,60	< 0,60	< 0,60	< 0,60
bezogen auf das Teilgas volumen (Norm, tr)	mg/m³	< 0,68	< 0,74	< 0,70	< 0,72	< 0,65	< 0,75	< 0,70
Blindwert in Relation zum Messwert	%	< 8	< 12	< 16	< 55	< 4	< 27	< 52
Sauerstoffgehalt im Abgas	Vol%	8,48	8,52	8,45	8,43	8,45	8,47	8,51
Massenstrom	kg/h	0,41	0,31	0,22	0,063	0,77	0,14	0,066
Staubkonzentration (n,f)	mg/m³	7,34	5,57	3,92	1,13	13,8	2,42	1,18
Staubkonzentration (n,tr)	mg/m³	8,41	6,38	4,49	1,30	15,8	2,77	1,35

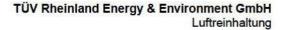
Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,f = Betriebszustand

tp,tr = Gasuhrzustand nach Abgastrocknung n,tr // n,f = bezogen auf Normzustand (273 K, 1013 hPa), trockenes Abgas // feuchtes Abgas

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.: EuL/21267427/U140_A108A

Seite 29 von 36


Taballa Anhana:	Augustina der	Staubemissionsmessunge	m (Tail 2/5)

Firma		BASF		
Anlage		Steam cracker:	2:	
Messstelle		A108/A109		
Messtag		30.07.2024	30.07.2024	30.07.2024
Messung	Nr.	15	16	17
Messbeginn	Uhr	22:23	22:58	0:07
Messende	Uhr	22:53	23:28	0:37
HAUPTVOLUMENSTROM				
Temperatur (im Mittel)	°C	307	307	307
desgleichen absolut	K	580	580	580
Barometerstand	hPa	1003	1003	1003
statische Druckdifferenz	hPa	103	103	103
absoluter Druck im Kanal	hPa	1106	1106	1106
Sauerstoffkonzentration	Vol%	8,6	8,6	8,6
Kohlendioxidkonzentration	Vol%	6,7	6,7	6,7
Feuchte (n,f)	m³/m³	0,127	0,127	0,127
Wassergehalt bez auf trockenes Abgas	g/m³	117,0	117,0	117,0
Dichte (n,f)	kg/m³	1,254	1,254	1,254
Dichte (t,p,f)	kg/m³	0,645	0,645	0,645
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	321	5	12
Mittlere Gasgeschwindigkeit	m/s	8,0	8,0	8,0
Kanalquerschnitt	m²	3,80	3,80	3,80
Hauptvolumenstrom (t,p,f)	m³/s	30,5	30,5	30,5
desgleichen stündlich (t,p,f)	m³/h	110.000	110.000	110.000
bz. auf Normzustand fe.(n,f)	m³/h	56.400	56.400	56.400
bz. auf Normzustand tr.(n,tr)	m³/h	49.200	49.200	49.200
ABGESAUGTES TEILGASVOLUMEN				
Aktive reale Messdauer	h:mm	00:30	00:30	00:30
Temperatur an der Gasuhr	°C	31,875	31	29,875
statischer Druck an der Gasuhr	hPa	0	0	0
Sondendurchmesser	mm	9	9	9
Teilgasvolumen (t,p,tr)	mª	1,006	0,945	0,925
Korrekturfaktor der Gasuhr		1,001	1,001	1,001
bz auf Normzustand tr.(n,tr)	m ^s	0,893	0,841	0,826
sokinetisches Verhältnis	%	217	204	201
MASSENKONZENTRATION- UND STROM		5 - 10V	24	
Staubmasse, Filter	mg	0,6	8,3	< 0,3
Staubmasse vor Filter	mg	0,33	0,33	0,33
Staubmasse, gesamt	mg	0,96	8,7	0,6
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	< 0,60
bezogen auf das Teilgasvolumen (Norm, tr)	mg/m³	< 0,67	< 0,71	< 0,73
Blindwert in Relation zum Messwert	%	< 62	< 7	< 94
Sauerstoffgehalt im Abgas	Vol%	8,54	8,52	8,57
Massenstrom	kg/h	0,053	0,51	0,038
Staubkonzentration (n,f)	mg/m³	0,94	8,98	0,67
Staubkonzentration (n,tr)	mg/m³	1,08	10,3	0,77

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,f = Betriebszustand

t, p,tr = Gasuhrzustand nach Abgastrocknung n,tr // n,f = bezogen auf Normzustand (273 K, 1013 hPa), trockenes Abgas // feuchtes Abgas

Seite 30 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Tabelle Anhang: Auswertung der Staubemissionsmessungen (Teil 4/5)

Firma		BASE				
Anlage		Steam cracker 2	!			
Messstelle		A108/A109		_		
Messtag		31.07.2024	31.07.2024	31.07.2024	31.07.2024	31.07.2024
Messung	Nr.	18	19	20	21	22
Messbeginn	Uhr	9:24	10:10	12:01	14:01	16:00
Messende	Uhr	9:54	10:40	12:31	14:31	16:30
HAUPTVOLUMENSTROM		· · · · · · · · · · · · · · · · · · ·				
Temperatur (im Mittel)	°C	315	315	315	315	315
desgleichen absolut	K	588	588	588	588	588
Barometerstand	hPa	1003	1003	1003	1003	1003
statische Druckdifferenz	hPa	104	104	104	104	104
absoluter Druck im Kanal	hPa	1107	1107	1107	1107	1107
Sauerstoffkonzentration	Vol%	9,2	9,2	9,2	9,2	9,2
Kohlendioxidkonzentration	Vol%	6,3	6,3	6,3	6,3	6,3
Feuchte (n,f)	m³/m³	0,12:2	0,122	0,122	0,122	0,122
Wassergehalt bez auf trockenes Abgas	g/m³	111,7	111,7	111,7	111,7	111,7
Dichte (n,f)	kg/m³	1,25/5	1,255	1,255	1,255	1,255
Dichte (t,p,f)	kg/m³	0,636	0,636	0,636	0,636	0,636
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	2.	-	_ 4	100	2
Mittlere Gasgeschwindigkeit	m/s	8,1	8,1	8,1	8,1	8,1
Kanalquerschnitt	m²	3,80	3,80	3,80	3,80	3,80
Hauptvolumenstrom (t,p,f)	m³/s	30,8	30,8	30,8	30,8	30,8
desgleichen stündlich (t,p,f)	m³/h	111.000	111.000	111.000	111.000	111.000
bz. auf Normzustand fe.(n.f)	m³/h	56.300	56.300	56.300	56.300	56.300
bz. auf Normzustand tr.(n,tr)	m³/h	49.400	49.400	49.400	49.400	49.400
ABGESAUGTES TEILGASVOLUMEN						
Aktive reale Messdauer	h:mm	00:30	00:30	00:30	00:30	00:30
Temperatur an der Gasuhr	°C	28,125	28,375	36	34,375	40,75
statischer Druck an der Gasuhr	hPa	0	0	0	0	0
Sondendurchmesser	mm	9	9	9	9	9
Teilgasvolumen (t,p,tr)	m³	0,92	0,9	0,916	0,985	0,935
Korrekturfaktor der Gasuhr	1	1,001	1,001	1,001	1,001	1,001
bz. auf Normzustand tr.(n,tr)	m³	0,827	0,808	0,802	0,867	0,806
Isokinetisches Verhältnis	%	200	195	194	210	195
MASSENKONZENTRATION- UND STROM		*				
Staubmasse, Filter	mg	< 0,3	0,8	0,6	2,2	3,3
Staubmasse vor Filter	mg	0,33	0,33	0,33	0,33	0,33
Staubmasse, gesamt	mg	0,63	1,1	0,9	2,5	3,6
Gesamtleerprobe, Feldblindwert	mg	< 0,60	< 0,60	< 0,60	< 0,60	< 0,60
bezogen auf das Teilgasvolumen (Norm, tr)	mg/m³	< 0,73	< 0,74	< 0,75	< 0,69	< 0,74
Blindwert in Relation zum Messwert	%	< 94	< 53	< 68	< 24	< 17
Sauerstoffgehalt im Abgas	Vol%	9,23	9,06	9,03	9,19	9,29
Massenstrom	kg/h	0,038	0,069	0,054	0,14	0,22
Staubkonzentration (n,f)	mg/m³	0,67	1,23	0,97	2,52	3,90
Staubkonzentration (n.tr)	mg/m³	0,77	1,40	1,10	2,87	4,45

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

n,tr // n,f = bezogen auf Normzustand (273 K, 1013 hPa), trockenes Abgas // feuchtes Abgas

t,p,f = Betriebszustand

t,p,tr = Gasuhrzustand nach Abgastrocknung

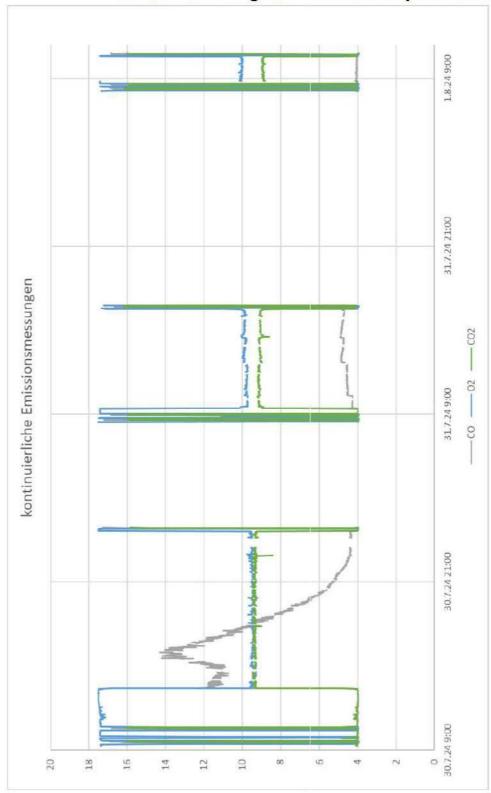
Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.: EuL/21267427/U140_A108A

Seite 31 von 36

Firma		BASF					
Anlage		Steamcra	icker 2				
Messstelle	A108/A109						
Messtag		01.08.	2024	01	.08.2024	0	1.08.2024
Messung	Nr.	23	_		24		25
Messbeginn	Uhr	8:4	18		9:26		10:03
Messende	Uhr	9:1	18	_	9:56		10:33
HAUPTVOLUMENSTROM				.53			
Temperatur (im Mittel)	°C	31	5	0.00	315		315
desgleichen absolut	K	58	88		588		588
Barometerstand	hPa	100	00		1000		1000
statische Druckdifferenz	hPa	10)5		105		105
absoluter Druck im Kanal	hPa	110	05		1105		1105
Sauerstoffkonzentration	Vol%	9.	5	-0	9,5		9,5
Kohlendioxidkonzentration	Vol%	6.			6.1		6.1
Feuchte (n,f)	m³/m³	0,1	19	- 19	0,119		0,119
Wassergehalt bez. auf trockenes Abgas	g/m³	109		- 27	109,1		109,1
Dichte (n,f)	kg/m³	1,2			1,256		1,256
Dichte (t,p,f)	kg/m³	0,6			0,636		0,636
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	-			-	\vdash	-
Mittlere Gasgeschwindigkeit	m/s	7.	8	6.0	7,8		7.8
Kanalquerschnitt	m²	3,8		78	3,80		3,80
Hauptvolumenstrom (t.p.f)	m³/s	29			29.6	\vdash	29.6
desgleichen stündlich (t,p,f)	m³/h	107.		1	07.000		107.000
bz auf Normzustand fe.(n.f)	m³/h	54.0	000		54.000		54.000
bz. auf Normzustand tr.(n,tr)	m³/h	47.6	600		47.600		47.600
ABGESAUGTES TEILGASVOLUMEN							
Aktive reale Messdauer	h:mm	00:	30	200	00:30		00:30
Temperatur an der Gasuhr	°C	36,3	-		32.875		35.8125
statischer Druck an der Gasuhr	hPa	0		6.0	0		0
Sondendurchmesser	mm	9		- 78	9	\vdash	9
Teilgasvolumen (t,p,tr)	m³	0,9	29		0,883	\vdash	0,884
Korrekturfaktor der Gasuhr		1.0		- 22	1,001		1,001
bz auf Normzustand tr.(n,tr)	m ^a	0,8	100		0,779		0,772
Isokinetisches Verhältnis	%	20	3		196		194
MASSENKONZENTRATION- UND STROM							
Staubmasse, Filter	mg	0,	9 <		0,3	<	0,3
Staubmasse vor Filter	mg	0,3	33		0,33		0,33
Staubmasse, gesamt	mg	1,2	26		0,6		0,6
Gesamtleerprobe, Feldblindwert	mg	< 0,6	60	<	0,60	<	0,60
bezogen auf das Teilgasvolumen (Norm, tr)	mg/m³	< 0,7	74	<	0,77	<	0,78
Blindwert in Relation zum Messwert	%	< 4	7 .	<	95	<	95
Sauerstoffgehalt im Abgas	Vol%	9,5	53		9,45		9,46
Massenstrom	kg/h	0,0	74		0,039		0,039
Staubkonzentration (n,f)	mg/m³	1,3	2000		0,72		0,72
Staubkonzentration (n,tr)	mg/m³	1,5	6	- 100	0,81		0,82

Die Tabelle enthält gerundete Werte, somit können sich Abweichungen zur Darstellung in Kapitel 6 ergeben.

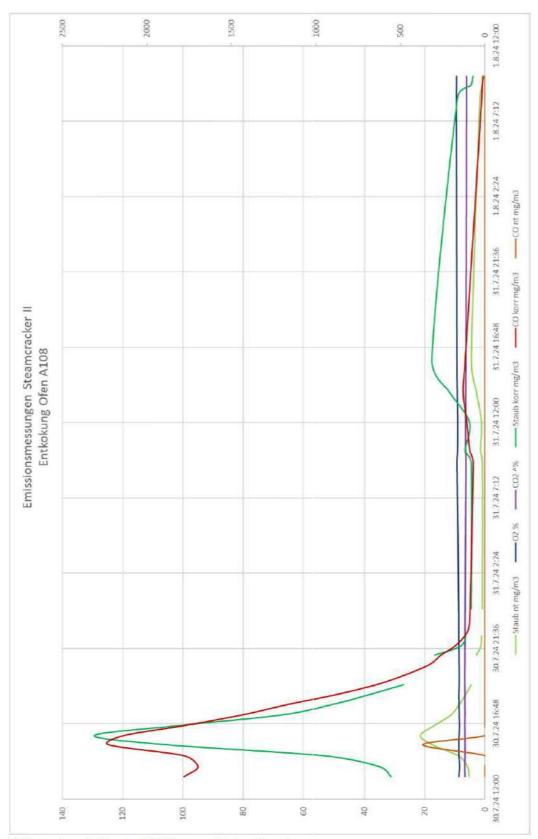
t,p,f = Betriebszustand


t,p,tr = Gasuhrzustand nach Abgastrocknung n,tr // n,f = bezogen auf Normzustand (273 K, 1013 hPa), trockenes Abgas // feuchtes Abgas

Seite 32 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stearmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

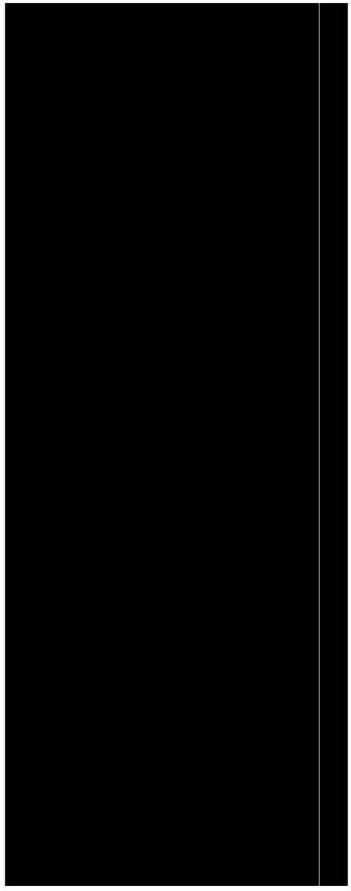
Anhang A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten



Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 33 von 36

Anhang A4: Grafische Darstellung des zeitlichen Verlaufs der Schadstoffkomponenten


Halbstundenmittelwerte; CO-Werte auf Sekundärachse

Seite 34 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Stearmcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Anhang A5: Aufzeichnungen des Betreibers

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Seite 35 von 36

Anhang A6: Berechnungsgrundlagen

Berechnungsformeln

$$\begin{split} \text{Abgasvolumenstrom:} & \quad \dot{V}_{n,tr} = B \cdot \dot{V}_{min,tr} \cdot \frac{21}{21 - O_2} \\ & \quad \dot{V}_{n,f} = B \cdot \left[\dot{V}_{min,f} + \dot{V}_{min,tr} \cdot \frac{O_2}{21 - O_2} \cdot (1 + f_{Luft}) \right] \\ \text{Abgasfeuchte:} & \quad f_{n,f} = \frac{H_2 O_{max} + \dot{V}_{min,tr} \cdot \frac{O_2}{21 - O_2} \cdot f_{Luft}}{\dot{V}_{min,f} + \dot{V}_{min,tr} \cdot \frac{O_2}{21 - O_2} \cdot (1 + f_{Luft})} \\ \text{CO}_2: & \quad \text{CO}_2 = \text{CO}_{2,max} - \frac{O_2 \cdot \text{CO}_{2,max}}{21} \\ \text{SO}_2 = \frac{2 \cdot S_{\textit{Gesamt}}}{\dot{V}_{min,tr} \cdot \frac{21}{21 - O_2}} \end{split}$$

 $\dot{V}_{n,tr}$ = Abgasvolumenstrom (trocken, bez. auf 273 K und 1013 hPa) in m³/h B = Brennstoffmenge (trocken, bez. auf 273 K und 1013 hPa) in m³/h

V_{min,tr} = Mindest-Abgasvolumen (trocken) nach stöchiometrischer Verbrennungsrech-

nung in m³/m³

 O_2 = Sauerstoffgehalt (trocken, bez. auf 273 K und 1013 hPa) in Vol.-% $\dot{V}_{n,f}$ = Abgasvolumenstrom (feucht, bez. auf 273 K und 1013 hPa) in m³/h

V_{min,f} = Mindest-Abgasvolumen (feucht) nach stöchiometrischer Verbrennungsrechnung

inkl. Verbrennungsluftfeuchte in m³/m³

f_{Luft} = Verbrennungsluftfeuchte bezogen auf trockene Luft in m³/m³ (in die Tabellen zu 1 und 2 wurde eine Feuchte von 0,01 m³/m³ einberechnet)

 $f_{n,f}$ = Abgasfeuchte (feucht, bez. auf 273 K und 1013 hPa) in m³/m³

H₂O_{max} = maximale Abgasfeuchte bei stöchiometrischer Verbrennung ohne Luftüberschuss inkl. Verbrennungsluftfeuchte (trocken, bez. auf 273 K und 1013 hPa) in

Vol.-%

CO₂ = Kohlenstoffdioxidgehalt (trocken, bez. auf 273 K und 101,3 kPa) in Vol.-% CO_{2,max} = maximaler Kohlenstoffdioxidgehalt bei stöchiometrischer Verbrennung

ohne Luftüberschuss (trocken, bez. auf 273 K und 101,3 kPa) in Vol.-%

SO₂ = Schwefeldioxidgehalt (trocken, bez. auf 273 K und 101,3 kPa) in mg/m³

S_{gesamt} = Gesamtschwefelgehalt im Brennstoff (bez. auf 273 K und 101,3 kPa) in mg/m³

10 mg/m3 nach DVGW Arbeitsblatt G 260 (A) vom September 2021

Luft_{min,tr} = Mindestluftmenge bei stöchiometrischer Verbrennung (trocken, bez. auf 273 K

und 101,3 kPa) in m³/m³ (informative Angabe)

Im Rahmen der Emissionsmessung wurde eine Verbrennungsluftfeuchte von 0,010 m³/m³ bezogen auf trockene Luft im Normzustand ermittelt und bei der Berechnung des Volumenstroms berücksichtigt.

Seite 36 von 36

Bericht über die Durchführung von Emissionsmessungen im Entkokungsbetrieb des Ofens A108 im Steamcracker II bei der Firma BASF SE für die Messkomponenten CO, Staub und O₂, Berichts-Nr.:EuL/21267427/U140_A108A

Anhang A7: Abkürzungen

Abkürzungen

со	Kohlenmonoxid	
O ₂	Sauerstoff	
CO ₂	Kohlendioxid	
Staub	Gesamtstaub	

TÜV RHEINLAND ENERGY & ENVIRONMENT GMBH

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂

TÜV-Bericht Nr.: EuL/21266433/C715_A001 Mainz, 22.08.2024

www.umwelt-tuv.de

tre-service@de.tuv.com

Die TÜV Rheinland Energy & Environment GmbH ist mit der Abteilung Immissionsschutz für die Arbeitsgebiete:

- Bestimmung der Emissionen und Immissionen von Luftverunreinigungen und Emissionen von Geruchsstoffen;
- Überprüfung des ordnungsgemäßen Einbaus und der Funktion sowie Kalibrierung kontinuierlich arbeitender Emissionsmessgeräte einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung;
- Feuerraummessungen;
- Eignungsprüfung von Messeinrichtungen zur kontinuierlichen Überwachung der Emissionen und Immissionen sowie von elektronischen Systemen zur Datenauswertung und Emissionsfernüberwachung
- Bestimmung der Schornsteinhöhen und Immissionsprognosen für Schadstoffe und Geruchsstoffe;
- Bestimmung der Emissionen und Immissionen von Geräuschen und Vibrationen, Bestimmung von Schallleistungspegeln und Durchführung von Schallnessungen an Windenergieanlagen

nach DIN EN ISO/IE:C 17025 akkreditiert.

Die Akkreditierung hat die DAkkS-Registriernummer: D-PL-11120-02-00.

Die <u>auszugsweise</u> Vervielfältigung des Berichtes bedarf der schriftlichen Genehmigung.

TÜV Rheinland Energy & Environment GmbH D-51105 Köln, Am Grauen Stein, Tel: 0221 806-5200, Fax: 0221 806-1349

Seite 2 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂ Berichts-Nr∴EuL/21266433/C715_A001

Leerseite

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 3 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂

Name der nach § 29b BlmSchG

bekannt gegebenen Stelle: TÜV Rheinland

Energy & Environment GmbH

Befristung der Bekanntgabe: 03.03.2028

Berichtsnummer / Datum: EuL/21266433/C715_A

001 22.08.2024

Betreiber: BASF SE

Carl-Bosch-Straße 38

67056 Ludwigshafen am Rhein

Standort: BASF SE

Carl-Bosch-Straße 38

67056 Ludwigshafen am Rhein

Bau C 715

Kundennummer: 1034129

Messtermin: 08.08.2024

Berichtsumfang: insgesamt 33 Seiten

Anhang ab Seite 26

Anlagenzuordnung: TA Luft

Seite 4 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂ Berichts-Nr.:EuL/21266433/C715_A001

Leerseite

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 5 von 33

Zusammenfassung

Anlage: Anlage zur Herstellung von Acrylsäure und Acrolin

Quellennummer: A001

Anlagenzustand: Es wurden 3 Einzelmessungen bei maximal möglicher

Leistung vorgenommen.

Der angegebene maximale Messwert beschreibt den

höchsten Wert aus allen Messungen.

Messkomponente y	Einheit	Maximaler Messwert y _{max} bezogen auf Bezugswert	Erw. Mess- unsicherheit (Up _{0,65})	Maximaler Mess- wert abzüglich erweiterter Mess- unsicherheit	Maximaler Mess- wert zuzüglich erweiterter Mess- unsicherheit	Emissions- begrenzung	Betriebszustand Auslastung
Gesamt-C	mg/m³	< 0,6	0,002	<1	<1	7	
Gesamtstaub	mg/m³	3,4	0,5	3	4	15	
SO ₂	mg/m³	36,0	2,0	34	38	35	
co	mg/m³	< 1,0	0,05	<1	1	35	
NOx	mg/m³	43,3	2,3	41	46	200	
O ₂ Bezugswert	Vol%					3	
CO ₂	(A)	6	141	-		4.	
Vol, t, p, Feuchte		- 8	-				

Alle Konzentrationsangaben beziehen sich auf den Normzustand nach Abzug des Wasserdampfanteils sowie normiert auf den angegebenen Sauerstoffbezugswert

Bei der Messkomponente SO₂ liegen die Ergebnisse aller Einzelmessungen oberhalb von 35 mg/m³. Abzüglich der Messunsicherheit liegen alle Messwerte für SO₂ unterhalb von 35 mg/m³.

Durch den Betreiber wurde eine Ursachenanalyse für die erhöhten SO₂-Werte durchgeführt, die im Kapitel 6.4 dieses Messberichts enthalten ist.

Seite 6 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂ Berichts-Nr.:EuL/21266433/C715_A001

Leerseite

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 7 von 33

Inhaltsverzeichnis

		Seite
Zusamme	enfassung	5
Inhaltsve	rzeichnis	7
1 Messa	ıfgabe	9
1.1	Auftraggeber:	9
1.2	Betreiber:	9
1.3	Standort:	9
1.4	Anlage:	9
1.5	Datum der Messung:	9
1.6	Anlass der Messung:	9
1.7	Aufgabenstellung:	9
1.8	Messkomponenten und Messgrößen:	9
1.9	Ortsbesichtigung vor Messdurchführung:	9
1.10	Messplanabstimmung:	9
1.11	An der Messung beteiligte Personen:	10
1.12	Beteiligte weitere Institute:	10
1.13	Fachlich Verantwortliche:	10
2 Beschi	eibung der Anlage / gehandhabte Stoffe	11
2.1	Bezeichnung der Anlage:	11
2.2	Beschreibung der Anlage	11
2.3	Beschreibung der Emissionsquellen nach Betreiberangaben	11
2.4	Angabe der It. Genehmigungsbescheid möglichen Einsatzstoffe	11
2.5	Betriebszeiten nach Betreiberangaben	11
2.6	Einrichtung zur Erfassung und Minderung der Emissionen	11
3 Beschi	eibung der Probenahmestelle	13
3.1	Lage des Messquerschnittes	13
3.2	Lage der Messpunkte im Messquerschnitt	14
4 Mess-	und Analysenverfahren, Geräte	15
4.1	Abgasrandbedingungen	15
4.2	Automatische Messverfahren	16
4.3	Manuelle Messverfahren für gas- und dampfförmige Emissionen	20
4.4	Messverfahren für partikelförmige Emissionen	21
4.5	Besondere hochtoxische Abgasinhaltsstoffe	21
4.6	Geruchsemissionen	21
5 Betrieb	szustand der Anlage während der Messungen	22
5.1	Produktionsanlage	22
5.2	Abgasreinigungsanlage	22
6 Zusam	menstellung der Messergebnisse und Diskussion	23
6.1	Bewertung der Betriebsbedingungen während der Messungen	23
6.2	Messergebnisse	23
6.3	Messunsicherheiten	24
6.4	Diskussion der Ergebnisse	24
7 Übersi	cht über den Anhang	25

Seite 8 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Leerseite

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 9 von 33

1 Messaufgabe

1.1 Auftraggeber: BASF SE

Carl-Bosch-Straße 38

67056 Ludwigshafen am Rhein

1.2 Betreiber: BASF SE

Carl-Bosch-Straße 38

67056 Ludwigshafen am Rhein

Ansprechpartner:

Telefon:

1.3 Standort: BASF SE

Carl-Bosch-Straße 38

67056 Ludwigshafen am Rhein

Bau C 715

1.4 Anlage: Genehmigungsbedürftige Anlage zur Herstel-

lung von Acrylsäure und Acrolin gemäß Nr. 4.1.2 G/E, des Anhangs 1 zur 4. BlmSchV

Betreiber-/Arbeitsstätten-Nr.: nicht bekannt

Anlagen-Nr.: nicht bekannt

1.5 Datum der Messung: 08.08.2024

Datum der letzten Messung: 04.04.2023

Datum der nächsten Messung: 2025

1.6 Anlass der Messung: Wiederkehrende Messung im Rahmen be-

hördlicher Auflagen

1.7 Aufgabenstellung: Feststellung der Emissionen gemäß

TA Luft und Genehmigungsbescheid

Genehmigungsbehörde: Stadt Ludwigshafen am Rhein

Genehmigungsbescheid, Az.: (1) 4-112GfLi-9614421 vom 02.12.1996

Genehmigungsbescheid, Az.: (2) 4-111H.Gf-814-03 vom 26.05.2003

Grenzwerte: siehe Zusammenfassung

Ziffern des Bescheides: 1 (2): Staub

Ziffern des Bescheides: 2 (2): CO, NOx, Gesamt-C, SO₂

Amtliche Messung: ja

1.8 Messkomponenten und Messgrößen: CO, NOx, Gesamt-C, SO₂, Staub und O₂ so-

wie CO2, Feuchte, Volumenstrom, Druck und

Temperatur

1.9 Ortsbesichtigung vor nicht durchgeführt, weil die Messstelle aus

Messdurchführung: vorherigen Messungen bereits bekannt ist.

1.10 Messplanabstimmung: mit dem Betreiber; die länderspezifische An-

meldung wurde am 19.07.2024 an die Fach-

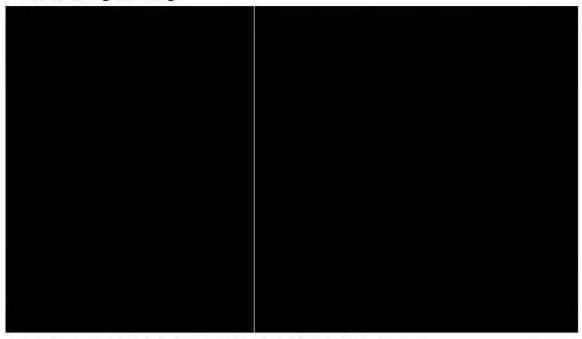
behörde versendet

Seite 10 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

131	An der Messung beteiligte Personen:	
1.12	Beteiligte weitere Institute:	keine
1.13	Fachlich Verantwortliche:	
	Telefon-Nr.:	
	Email-Adresse:	

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001


Seite 11 von 33

2 Beschreibung der Anlage / gehandhabte Stoffe

2.1 Bezeichnung der Anlage: Genehmigungsbedürftige Anlage zur Herstel-

lung von Acrylsäure und Acrolein

2.2 Beschreibung der Anlage

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Quellen Nr. A001

Bezeichnung der Quelle A001

Höhe über Grund in m: 38

UTM-Koordinaten: 32458656 / 5484410

Bauausführung: Stahl

2.4 Angabe der It. Genehmigungsbescheid möglichen Einsatzstoffe

2.5 Betriebszeiten nach Betreiberangaben

2.6 Einrichtung zur Erfassung und Minderung der Emissionen

2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Art der Emissionserfassung: geschlossenes System mit gerichteter Emis-

sionsquelle, ohne Saugzugventilator

Nennleisttung, m³/h: entfällt

Ansaugfläche, m²: keine Angaben

Seite 12 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

2.6.2 Einrichtung zur Verminderung der Emissionen:

Thermische Nachverbrennung

Hersteller, Typ: Siegener AG, Brennkammer D 7100

Baujahr: 1976

Art des Brenners: 5 Brennerlanzen für Gase/Flüssigkeiten

Art des Zusatzbrennstoffes: Erdgas/Propan (Stützgas)

Temperatur der Reaktionskammer: > 860 °C

Verweilzeit in der Reaktionskammer: > 1 s

Wartungsintervalle: nach Bedarf

Letzte Wartung: keine Angaben

2.6.3 Einrichtung zur Verdünnung des

Abgases: keine

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 13 von 33

3 Beschreibung der Probenahmestelle

3.1 Lage des Messquerschnittes

Die Messstelle Auslass A 001 befindet sich in einem rechteckigen Abgaskanal vor Einleitung in den Abgaskamin. Die Messstutzen befinden sich im Krümmer der Abgasleitung beim Übergang von senkrechter in waagrechter Abgasführung. Die Messstelle befindet sich in einer Höhe von ca. 32 m über Grund und ist über Treppen zu erreichen.

Abmessungen des Messquerschnittes: 2,67 m x 2,86 cm

gerade Einlaufstrecke: 0 m gerade Auslaufstrecke: 0 m

Strecke bis zur Mündung: ca. 5 m

Empfehlung ≥ 5·Dh Einlauf und 2·Dh

Auslauf (5·Dh vor Mündung): nicht erfüllt

3.1.2 Arbeitsfläche und Messbühne Die Arbeitsfläche ist ausreichend groß und

die Messöffnungen sind gefahrlos zu erreichen. Die Messöffnungen sind mit Ventilen gesichert. Eine ausreichende Rückenfreiheit zum Einführen der Entnahmesonden ist gegeben. Ein Wetterschutz ist vorhanden.

3.1.3 Messöffnungen:

Anzahl der Messöffnungen und Durchmes-

ser: 3 x 3" & 3 x 2,5 & & 1 x 10 mm

Lage der Messöffnungen: in einer Ebene, 90° versetzt

Stutzenlänge: ca. 0,45 m

3.1.4 Strömungsbedingungen im Messquerschnitt

Winkel zwischen Gasstrom/Mittelachse

Abgaskanal < 15°: erfüllt keine negative lokale Strömung: erfüllt

Verhältnis von höchster zu niedrigster Ge-

schwindigkeit < 3:1: erfüllt

Mindestgeschwindigkeit (in Abhängigkeit

vom verwendeten Messverfahren): erfüllt

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Messbedingungen nach DIN EN 15259: Die Anforderungen werden eingehalten, auch

wenn die Empfehlungen nicht erfüllt werden.

ergriffene Maßnahmen: Die Messpunkteanzahl für die Volumenstrom-

messung entspricht der maximal empfohlenen Messpunkteanzahl der DIN EN 15259, da die Empfehlung an die gerade Strömungsstrecke nicht eingehalten wurde. Außerdem wurde ein Geschwindigkeitsprofil mit 21 Messpunkten untersucht. Die Messungen erfüllen die Anforderungen an die Strömungs-

bedingungen.

Seite 14 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

zu erwartende Auswirkungen auf das Ergebnis:

Es wurde bei der vorherigen Messung eine homogene Verteilung im Querschnitt bestimmt. Daher sind keine Auswirkungen auf die Messunsicherheit zu erwarten.

Die Anforderungen an die Strömungsbedingen wurden auch mit erhöhter Messpunktzahl erfüllt. Daher sind keine Auswirkungen auf die Messunsicherheit zu erwarten.

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt:

Achsen: 3

Messpunkte je Achse: 7

Abstand der Messpunkte vom Kanalrand: 20, 61, 102, 143, 184, 225, 266 cm

3.2.2 Homogenitätsprüfung: nicht durchgeführt, weil eine Homogenitäts-

prüfung bereits vorliegt

Datum der Homogenitätsprüfung: 04.04.2023

Berichts-Nr.: EuL/21257251/C715_A001

Prüfinstitut: TÜV Rheinland Energy & Environment

Ergebnis der Homogenitätsprüfung: Messung an einem beliebigen Punkt

Lage und Ort der Probenahmestellen haben sich gegenüber dem Zeitpunkt der Homogenitätsprüfung nicht geändert. An der Anlage erfolgten zudem keine relevanten Änderungen.

3.2.3 Komponentenspezifische Darstellung

Messkom- ponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentati- ver Messpunkt
NOx	1	1	\boxtimes	\boxtimes	
СО	1	1	\boxtimes		
O ₂	1	1			
CO ₂	1	1			
Gesamt-C	1	1			
partikelför- mige Kompo- nente	s. 3.2.1	s. 3.2.1			
Geschwindig- keit	s. 3.2.1	s. 3.2.1	П		

Die Homogenitätsuntersuchung wurde für die oben angegebenen Komponenten erfolgreich in der vorhergehenden Messung durchgeführt. Damit ist von einer homogenen Verteilung aller Gase im Messquerschnitt auszugehen.

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 15 von 33

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Ermittlungsmethode: Staudrucksonde mit Mikromanometer

Messverfahren: DIN EN ISO 16911-1, Juni 2013

Messeinrichtung: SI Special Instruments / LPU 3 Profi

Messbereich: 0 - 500 Pa

Berechnungsverfahren: gemäß DIN EN ISO 16911-1 ohne Berück-

sichtigung von Wandeffekten

kontinuierliche Ermittlung: nein

4.1.2 Statischer Druck im Abgaskamin: Manometer nach 4.1.1

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung: Greisinger / GPB 3300

4.1.4 Abgastemperatur:

Messeinrichtung: Messdatenerfassung wie in 4.2.1.8 mit NiCr-/Ni-Thermoelement, Typ K

Messbereich: -200 bis 1370°C

kontinuierliche Ermittlung: ja

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messverfahren: Adsorption an Silikagel und nachfolgende

gravimetrische Bestimmung gemäß DIN EN

14790, Mai 2017

Messeinrichtung: Kern & Sohn / PCB 3000-2

Messbereich: 0 - 1000 g

4.1.6 Abgasdichte: berechnet unter Berücksichtigung der Abgas-

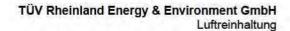
bestandteile an Sauerstoff (O₂), Kohlendioxid (CO₂), Stickstoff (mit 0,933 % Argon), Abgasfeuchte (Wasserdampfanteil im Abgas) sowie der Abgastemperatur und Druckverhältnisse

im Kanal.

4.1.7 Abgasverdünnung: nicht festgestellt

4.1.8 Volumenstrom

mittlere Abgasgeschwindigkeit: s. 4.1.1


Querschnittsfläche: Längenmessung der Messachsen und Stut-

zen mit einer Messstange, Abmessen der

Messstange mit Gliedermaßstab

Fläche der Volumenstrommesseinrichtung

zu Querschnittsfläche: < 5 %

Seite 16 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

4.2	Automatische Messverfahren	
4.2.1	Messkomponente:	Kohlenmonoxid (CO)
4.2.1.1	Messverfahren:	Bestimmung der Massenkonzentration von Kohlenmonoxid – Standardreferenzverfahren: Nicht-dispersive Infrarotspektrometrie gemäß DIN EN 15058, Mai 2017
4.2.1.2	Analysator:	Horiba / PG 350 P-AMS Zertifizierung nach DIN EN 15267-4
4.2.1.3	eingestellter Messbereich in ppm:	0 - 200
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2
4.2.1	Messkomponente:	Stickstoffoxide (NOx)
4.2.1.1	Messverfahren:	Bestimmung der Massenkonzentration von Stickstoffoxiden – Standardreferenzverfah- ren: Chemilumineszenz gemäß DIN EN 14792, Mai 2017
4.2.1.2	Analysator:	Horiba / PG 350 P-AMS Zertifizierung nach DIN EN 15267-4
4.2.1.3	eingestellter Messbereich in ppm:	0 - 200
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2
4.2.1	Messkomponente:	Sauerstoff (O ₂)
4.2.1.1	Messverfahren:	Bestimmung der Volumenkonzentration von Sauerstoff, Standardreferenzverfahren: Para- magnetismus gemäß DIN EN 14789, Mai 2017
4.2.1.2	Analysator:	Horiba / PG 350 P-AMS Zertifizierung nach DIN EN 15267-4
4.2.1.3	eingestellter Messbereich in Vol%:	0 - 25
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2
4.2.1	Messkomponente:	Kohlendioxid (CO ₂)
4.2.1.1	Messverfahren:	NDIR / Hausverfahren in Anlehnung an DIN EN 15058, Mai 2017
4.2.1.2	Analysator:	Horiba / PG 350 P-AMS Zertifizierung nach DIN EN 15267-4
4.2.1.3	eingestellter Messbereich in Vol%:	0 - 20

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 17 von 33

Beschreibung 4.2.1.5 bis 4.2.1.7 für CO, NOx, CO₂, O₂

4.2.1.5 Probenahme und Probenaufbereitung

Entnahmesonde: Titan, beheizt auf °C 180

maximale Eintauchtiefe in m: 1,5

Staubfilter: Quarzwatte, beheizt durch Abgas

Probengasleitung vor Gasaufbereitung: beheizt durch Abgas 180
Probengasleitung vor Gasaufbereitung: Länge in m: 5

Probengasleitung nach Gasaufbereitung: Länge in m: 2

Messgasaufbereitung

Messgaskühler: M & C / PSS 5

Temperatur geregelt auf: ≤ 4°C

4.2.1.6 Überprüfung von Null- und Referenzpunkt mit Prüfgasen

Nullgas: N_2 N_2

Mischprüfgas: NO, CO, CO₂ in N₂ O₂ Außenluft Konzentration: NO 204,3 mg/m³ 20,94 Vol.-%

CO 190,3 mg/m³ CO₂ 14,95 Vol-%

Unsicherheit: in % 2
Flaschen ID-Nummer: 17395

Hersteller: Nippon Gases
Herstelldatum: 25.04.2023

Stabilitätsgarantie in Monaten: 36 rückführbar zertifiziert: ja

Überprüfung des Zertifikates durch: TÜV Rheinland

am: 07.11.2023

Prüfgas und Nullgas durch das gesamte Probenahmesystem incl. Sonde und

Messgasaufbereitung aufgegeben: ja ja

Seite 18 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

4.2.1	Messkomponente:	Gesamt-C (FID)		
4.2.1.1	Messverfahren:	Bestimmung der Massenkonzentration des gesamten gasförmigen organisch gebunde- nen Kohlenstoffs, Kontinuierliches Verfahrer mit dem Flammenionisationsdetektors (FID) gemäß DIN EN 12619, April 2013		
4.2.1.2	Analysator:	M & A / Thermo FID Eignu sis der BEP ohne Zertifizie keit des Geräts für den mo wurde verifiziert.	rung, Einsatzfähig-	
4.2.1.3	eingestellter Messbereich:	0 - 60 mg C/m ³		
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2		
4.2.1.5	Probenahme und Probenaufbereitung			
	Entnahmesonde:	Edelstahl, beheizt auf °C	180	
	maximale Eintauchtiefe in m:			
	Staubfilter:	M&C PSP 4000-H/C Mess 2K, beheizt auf 180°C	gasfilter Typ SP-	
	Probengasleitung vor Gasaufbereitung:	beheizt auf °C	180	
	Probengasleitung vor Gasaufbereitung:	Länge in m:	10	
	Probengasleitung nach Gasaufbereitung:	nicht zutreffend		
	Messgasaufbereitung	nicht zutreffend		
4.2.1.6	Überprüfung von Null- und Referenzpunkt i	mit Prüfgasen		
	Nullgas:	synthetische Luft		
	Prüfgas und Trägergas:	Propan als C in Luft		
	Konzentration:	32,4 ppm		
	Unsicherheit: in %	2		
	Flaschen ID-Nummer:	17044		
	Hersteller:	Nippon Gases		
	Herstelldatum:	24.06.2021		
	Stabilitätsgarantie in Monaten:	60		
	rückführbar zertifiziert:	ja 		
	Überprüfung des Zertifikates durch:	TÜV Rheinland		
	am:	16.12.2021		
	Prüfgas und Nullgas durch das gesamte Probenahmesystem incl. Sonde und Messgasaufbereitung aufgegeben:	ja		
4.2.1.7	Einstellzeit des Messaufbaus in s:	30		
4.4.1.1	(Prüfgas über die Entnahmesonde)	30		
	(1 ranges aber ale Entitleminesonide)			

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 19 von 33

4.2.1.8 Messwerterfassungssystem: Yokogawa / DX1012

Erfassungsprogramm (Software): Yokogawa / Excel

4.2.1.9 Maßnahmen zur Qualitätssicherung

Ergebnis der Überprüfung des Nullpunkts und des Referenzpunkts nach der Messung:

Komponente	Drift am Nullpunkt	Drift am Referenzpunkt
СО	< 2,0 %	< 5,0 %
NO	< 2,0 %	< 5,0 %
Gesamt-C	< 2,0 %	< 2,0 %
O ₂	< 5,0 %	< 2,0 %
CO ₂	< 2,0 %	< 5,0 %

Es erfolgte eine rechnerische Berücksichtigung der Null- und Referenzpunktdrift

Seite 20 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

4.3	Manuelle Messverfahren für gas- und da	npfförmige Emissionen	
4.3.1	Messkomponente:	Schwefeldioxid	
4.3.1.1	Messverfahren:	Bestimmung von Schwefeloxiden, Standard- referenzverfahren gemäß DIN EN 14791, Mai 2017	
4.3.1.2	Probenahme und Probenaufbereitung		
	Entnahmerohr:	Glas, beheizt auf °C 180	
	Maximale Eintauchtiefe in m:	1,5	
	Partikelfilter:	Quarzwatte (Heraeus, 8 μm) im Filterge- häuse aus Glas	
	-beheizt, °C	durch Abgas (20 °C > Taupunkt)	
	Entnahmeleitung:	PTFE, beheizt auf °C 180	
	Länge der Entnahmeleitung in m:	5	
	Ab-/Adsorptionseinrichtungen:	Waschflaschen mit Fritten D2 (2fach)	
	Sorptionsmittel und Menge:	0,3%ige Wasserstoffperoxidlösung, je 35 ml	
	Abstand Ansaugöffnung der Entnahme- sonde / Abscheideelement in m:	7	
	Absaugeinrichtung:	Gasförderpumpe mit Gaszähler	
	Zeitraum zwischen Probenahme und Analyse in Tagen:	7	
4.3.1.3	Analytische Bestimmung		
	Analyseverfahren:	Ionenchromatographie	
	Standort Analysenlabor:	Köln	

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 21 von 33

4.4 Messverfahren für partikelförmige Ernissionen

4.4.1 Messkomponente: Gesamtstaub

4.4.1.1 Messverfahren: Ermittlung der Staubmasse bei geringen

Staubgehalten;

manuelles gravimetrisches Verfahren gemäß

DIN EN 13284, Teil 1, Februar 2018

4.4.1.2 Probenahme und Probenaufbereitung

Rückhaltesystem für partikelförmige Stoffe

Filtergerät: Planfilterkopfgerät

Anordnung: Instack mit Krümmer zwischen Entnahme-

sonde und Filtergehäuse

Filtrationstemperatur in °C: Abgastemperatur

Wirkdurchmesser Entnahmesonde: siehe Tabelle, Anhang 2

Material Entnahmesonde: Titan

Material Absaugrohr: Edelstahl
Material Filter: Quarzfaser

Filterdurchmesser: 50 mm

Absorptionssysteme für filtergängige Stoffe: nicht zutreffend

Absaugeinrichtung: Drehschieberpumpe, mind. 6 m³/h

mit Gaszähler G4

4.4.1.3 Behandlung der Filter und der Ablagerungen

Trocknungstemperatur / -zeit

vor der Beaufschlagung: 300 °C / mind. 1 h nach der Beaufschlagung: 160 °C / mind. 1 h

Rückgewinnung von Ablagerungen

vor dem Filter: nach jeder Messreihe

(mindestens einmal pro Tag)

Konditionierung im Wägeraum (vor / nach): 24 h / 24 h (Exsikkator)

Waage / Hersteller: XPE 205 / Mettler Toledo

Standort Analysenlabor: Köln

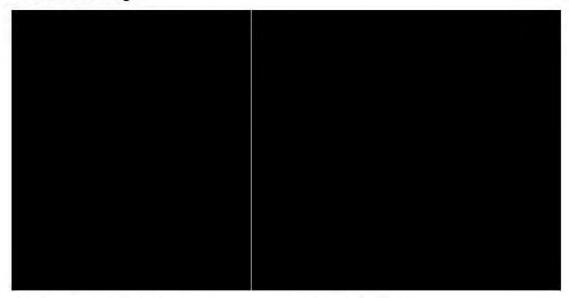
4.4.1.4 Aufbereitung und Analyse der

Filter und Absorptionslösungen: nicht zutreffend

Die Angaben zur Einhaltung der isokinetischen Bedingungen finden sich in Anhang 2.

4.5 Besondere hochtoxische Abgasinhaltsstoffe nicht zutreffend

4.6 Geruchsemissionen nicht zutreffend



Seite 22 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

5 Betriebszustand der Anlage während der Messungen

5.1 Produktionsanlage

5.2 Abgasreinigungsanlage

Abweichungen von genehmigter oder bestimmungsgemäßer Betriebsweise:

Besondere Vorkommnisse:

siehe Anhang A4.

nicht festgestellt

keine

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 23 von 33

6 Zusammenstellung der Messergebnisse und Diskussion

6.1 Bewertung der Betriebsbedingungen während der Messungen

6.2 Messergebnisse

Betriebs- und Abgasbedingungen

Ergebnisse der Schadstoffuntersuchungen

Tabelle 6.1: Ergebnisse der Emissionsmessungen für Gesamtstaub

Messtag	Messung Nr.	von	rzeit bis	O ₂ -Gelhalt Vol'%	Gesamtstaub- Konzentration mg/m³	bei 3 Vol% O2 mg/m³	erw. MU U _{0,96} mg/m³	Staub- Massenstrom g/h
08.08.24	1	10:45	11:48	3,6	2,8	2,9	0,5	234
08.08.24	2	11:50	12:53	3,7	3,1	3,2	0,5	254
08.08.24	3	13:07	14:10	3,7	3,2	3,4	0,5	267
Minimum					2,8	2,9		
Maximum				3,2	3,4			
Mittelwert					3,0	3,2		

Tabelle 6.2: Ergebnisse der Emissionsmessungen für SO₂

Messtag	Messung Nr.	von	rzeit bis	O ₂ -Gelhalt	SO ₂ Konzentration mg/m ³	bei 3 Vol% O2 mg/m³	erw. MU U _{0,95} mg/m³	SO₂− Massenstrom g/h
08.08.24	1	10:45	11:15	3,6	34,4	35,5	3	2806,4
08.08.24	2	11:50	12:20	3,8	34,4	36,0	2	2811,2
08.08.24	3	13:07	13:37	3,7	34,4	35,8	2	2807,2
Minimum	b			1	34,4	35,5		
Maximum				34,4	36,0			
Mittelwert				34,4	35,8			

Tabelle 6.3: Ergebnisse der Emissionsmessungen für CO

Messtag	Messung Nr.	von	bis	O ₂ -Gelhalt Vol'%	CO-Konzentration mg/m³	bei 3 Vol% O2 mg/m³	erw. MU U _{0,95} mg/m³	CO- Massenstrom kg/h
08.08.24	1	10:45	11:15	3,6	< 1,0	< 1,0	0,05	< 0,08
08.08.24	2	11:50	12:20	3,8	< 1,0	< 1,0	0,05	< 0,08
08.08.24	3	13:07	13:37	3,7	< 1,0	< 1,0	0,05	< 0,08
Minimum	*			-	< 1,0	< 1,0		
Maximum			< 1,0	< 1,0				
Mittelwert					< 1.0	< 1,0		

Tabelle 6.4: Ergebnisse der Emissionsmessungen für NOx

Messtag	Messung	Uhrzeit		O ₂ -Gelhalt	O _z -Gehalt NOx-Konzentration		erw. MU	NOx-
	Nr.	von	bis	Vol'%	mg/m³	bei 3 Vol% O2 mg/m³	U _{0,98} mg/m³	Massenstron kg/h
08.08.24	1	10:45	11:15	3,6	41,3	42,7	2,2	3,37
08.08.24	2	11:50	12:20	3,8	40,9	42,8	2,2	3,34
08.08.24	3	13:07	13:37	3,7	41,5	43,3	2,3	3,39
Minimum					41,3	42,7	-	
Maximum			41,5	43,3	3			
Mittelwert				41,2	42,9			

Seite 24 von 33

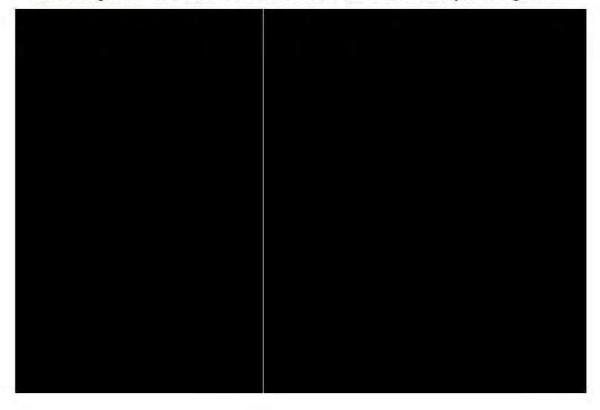
Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Tabelle 6.5: Ergebnisse der Emissionsmessungen für Gesamt-C

Messtag	Messung	Uh	rzeit	O ₂ -Gelhalt	Gesamt-C-Konzei	ntration	erw. MU	Gesamt-C-
	Nr.	von	bis	Vol'%	mg/m³	bei 3 Vol% O2 mg/m³	U _{0,95} mg/m³	Massenstrom kg/h
08.08.24	1	10:45	11:15	3,6	< 0,5	< 0,6	0,005	< 0,04
08.08.24	2	11:50	12:20	3,8	< 0,5	< 0,6	0,002	< 0,04
08.08.24	3	13:07	13:37	3,7	< 0,5	< 0,6	0,001	< 0,04
Minimum					< 0,5	< 0,6		
Maximum					< 0,5	< 0,6		
Mittelwert					< 0,5	< 0,6		

Die Einzelergebnisse und Messprotokolle befinden sich im Anhang.

6.3 Messunsicherheiten


Die Tabelle zur Beurteilung der Messergebnisse, in der maximaler Messwert und erweiterte Messunsicherheit angegeben sind, befindet sich in der Zusammenfassung ab Seite 5.

Die Messunsicherheiten werden bei allen Komponenten rechnerisch ermittelt. Hierbei werden die Vorgaben der komponentenspezifischen Normen berücksichtigt.

6.4 Diskussion der Ergebnisse

Unter Berücksichtigung der Messgenauigkeit der angewandten Messverfahren und der vorgefundenen Betriebsweise der Anlage sind die Ergebnisse plausibel. Die ermittelten Werte sind repräsentativ für die Emissionsquelle.

Die Messergebnisse entsprechen weitestgehend der Größenordnung den Ergebnissen der Vormessungen. Für SO2 wurde durch den Betreiber eine Ursachenanalyse durchgeführt:

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 25 von 33

Die Prüfergebnisse beziehen sich auf die untersuchte Anlage im beschriebenen Zustand.

Abteilung Immissionsschutz / Luftreinhaltung (EuL)

EuL/21266433/C715_A001

7 Übersicht über den Anhang

A1: Abgasrandbedingungen

A2: Auswertung der Schadstoffmessungen

A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten

A4: Aufzeichnungen des Betreibers

A5: Abkürzungen

Seite 26 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Anhang A1: Abgasrandbedingungen

Tabelle Anhang: Bestimmung der Volumenströme

Anlage		Acrylsäurefabrik 2 C715
Messstelle		Kamin / Reingas
Messtag		8.8.2024
Messung	Nr.	1
Messbeginn	Uhr	10:34
Messdauer	min	21
HAUPTVOLUMENSTROM (Mittelwerte)		
Temperatur	°C	299
desgleichen absolut	K	572
Barometerstand	hPa	1003
statische Druckdifferenz	hPa	1,1
absoluter Druck im Kanal	hPa	1004
Sauerstoffkonzentration	Vol%	3,7
Bezugs-Sauerstoffkonzentration	Vol%	3,0
Kohlendioxidkonzentration	Vol%	6,1
Feuchte (ff)	Vol%	13,9
Dichte (t,p,f)	kg/m³	0,585
Mittlere Gasgeschwindigkeit	m/s	7,4
Verhältnis v _{max} ∶v _{min}		1,9:1
Kanalquerschnitt	m²	7,49
unnormierter Volumenstrom q _{V,w} (t,p,f)	m³/h (t,p,f)	200.280
erweiterte Messunsicherheit	m³/h	49.413
relative erweiterte Messunsicherheit	%	24,7
Volumenstrom, normiert feucht (Norm f)	m³/h (n,f)	94.750
Volumenstrom, normiert q _{V,0d} (Norm tr)	m³/h (n,tr)	81.580
Volumenstrom, normiert bezogen auf 3 Vol% Bezugs-Sauerstoffkonzentration	m³/h (n,tr,O ₂)	78.410

Tabelle Anhang: Angaben zu Maßnahmen zur Qualitätssicherung automatischer Messverfahren gemäß Kapitel 4, 4.2.1.9

Messtag	8.8.2024	
Komponente O ₂ :		
Drift am Nullpunkt	2,5%	
Drift am Referenzpunkt	1,3%	
Komponente CO ₂ :		
Drift am Nullpunkt	0,4%	
Drift am Referenzpunkt	2,7%	
Komponente Gesamt-C:		
Drift am Nullpunkt	1,0%	
Drift am Referenzpunkt	1,0%	
Komponente NO _x :		
Drift am Nullpunkt	0,0%	
Drift am Referenzpunkt	3,9%	
Komponente CO:		
Drift am Nullpunkt	0,0%	
Drift am Referenzpunkt	3,6%	

Es erfolgte eine rechnerische Berücksichtigung der Driften.

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 27 von 33

Tabelle Anhang: Geschwindigkeitsverteilung im Messquerschnitt

Messtag	8.8.2024
Messung	1
Messbeginn	10:34
	Geschwindigkeit
Achse / Punkt	m/s
1/1	6,8
1/2	8,4
1/3	9,7
1/4	8,8
1/5	8,4
1/6	9,7
1/7	7,8
2/1	6,2
2/2	8,2
2/3	8,1
2/4	7,3
2/5	7,5
2/6	6,2
2/7	5,2
3/1	6,0
3/2	8,1
3/3	6,6
3/4	6,7
3/5	6,9
3/6	6,9
3/7	6,6
Verhältnis	
V _{max} :V _{min}	1,9:1
V _{min}	5,2
V _{max}	9,7
V _{mittel}	7,4

Tabelle Anhang: Bestimmung der Abgasfeuchte

Anlage	Acıylsäurefabrik 2 C715					
Messstelle:	Kamin / Reingas					
Messtag:		8.8.2024	8.8.2024	8.8.2024		
Messung Nr.:		1	2	3		
Messbeginn	Uhr	10:45	11:50	13:07		
Messende	Uhr	10:15	12:20	13:37		
PROBENAHME						
Dauer der Absaugung	min	30	30	30		
Abges_Teilgasvolumen (t,p,tr)	m³	0,0606	0,0545	0,0536		
Korrekturfaktor der Gasuhr		0,995	0,995	0,995		
Mittl. Temperatur an der Gasuhr	°C	24	26	28		
Desgl. in abs. Temperaturgraden	K	297	299	301		
Barometerstand	hPa	1003	1003	1003		
Stat. Druckdifferenz an der Gasuhr	hPa	0	0	0		
Wasserdampfpartialdruck	hPa	29	33	37		
Korr. Druck an der Gasuhr	hPa	1003	1003	1003		
Abges. Teilgas volumen (Norm tr)	m³	0,0549	0,0490	0,0479		
Masse						
Masse inkl. Waschflasche, Anfang	g	1077,6	1088,5	1086,2		
Masse inkl. Waschflasche, Ende	g	1084,7	1094,4	1092,1		
Feuchtegehalt	g/m³	129,6	120,9	122,0		
	Vol%	13,9	13,1	13,2		

Seite 28 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Anhang A2: Auswertung der Schadstoffmessungen

Tabelle Anhang: Auswertung der Staubemissionsme:ssungen

Firma	· E	BASE							
Anlage	Acrylsäurefabrik 2 C715								
Messstelle	Karnin / Reingas								
Messtag		08.08.2024 08.08.2024 0							
Messung	Nr.	1	2	3					
Messbeginn	Uhr	10:45	11:50	13:07					
Messende	Uhr	11:48	12:53	14:10					
gemessener Sauerstoffgehalt	Vol%	3,6	3,68	3,74					
HAUPTVOLUMENSTROM									
Volumenstrom-Messung	Nr.	1	1	1					
bz. auf Normzustand (n,tr)	m³/h	81.580	81.580	81.580					
ABGESAUGTES TEILGASVOLUMEN									
Dauer der Absaugung	min	63	63	63					
Temperatur an der Gasuhr	°C	22	26	29					
statischer Druck an der Gasuhr	hPa	0	0	(
Sondendurchmesser	mm	14	14	14					
Teilgasvolumen (t,p,tr)	m³	2,046	2,023	2,091					
Korrekturfaktor Gasuhr		1,000	1,000	1,000					
bz. auf Normzustand tr.(n,tr)	m³	1,874	1,831	1,874					
Isokinetisches Verhältnis	%	106	104	107					
MASSENKONZENTRATION- UND STROM									
Staubmasse, Filter	mg	5,33	5,67	6,10					
Staubmasse vor Filter	mg	< 0,09	< 0,10	< 0,11					
Staubmasse, gesamt	mg	5,38	5,72	6,15					
Gesamtleerprobe, Feldblindwert	mg	4,04	4,04	4,04					
bezogen auf das Teilgas volumen (ntr)	mg/m³	2,16	2,21	2,16					
Blindwert in Relation zum Grenzwert	%	14,4	14,7	14,4					
Blindwert in Relation zum Messwert	%	75	71	66					
Massenstrom	g/h	234	254	267					
Staubkonzentration	100	221	2.72	- 2.2					
bz. auf Normzustand trocken (n,tr)	mg/m³	2,86	3,12	3,28					
bez. auf Normzustand trocken und 3 Vol% O2 Bezugs-Sauerstoffkonzentration	mg/m³	2,96	3,24	3,42					

n,tr: im Normzustand (273 K, 1013 hPa) nach Abzug des Feuchteanteils

n,f: im Normzustand (273 K, 1013 hPa) ohne Abzug des Feuchteanteils

t,p,f: im Betriebszustand

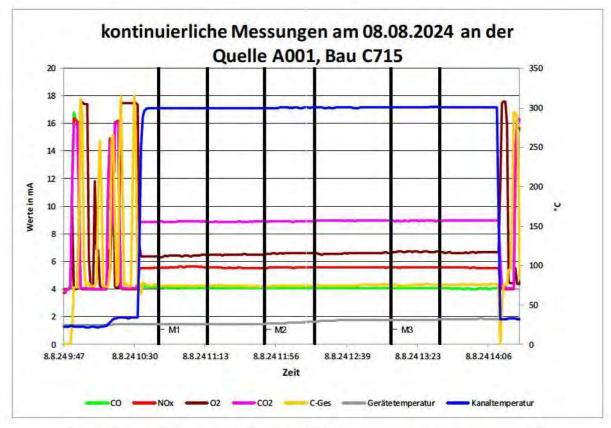
t,p,tr: Gasuhrzustand nach Abgastrocknung

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 29 von 33

Tabelle Anhang: Bestimmung der Emissionen an

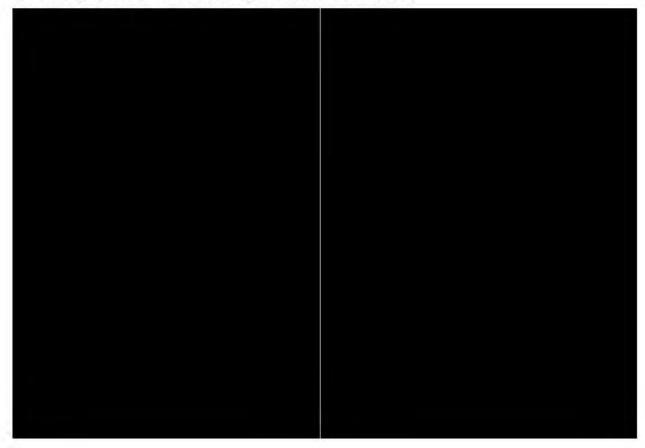
Anlage	Acrylsäurefabrik 2 C715						
Messstelle:	Kamin / Reiingas						
Messtag:		8.8	3.2024		8.8.2024	117	8.8.2024
Messung Nr.:			1		2		3
Messbeginn	Uhr	1	0:45		11:50		13:07
Messende	Uhr	1	1:15		12:20		13:37
HAUPTVOLUMENSTROM							
Volumenstrom-Messung	Nr.		1		1	91.	1
bez auf Normzustand trocken (Norm tr)	m³/h		81.580		81.580		81.580
PROBENAHME				_			
Dauer der Absaugung	min		30		30		30
Abges. Teilgasvolumen (t,p,tr)	m ^s		0,0606		0,0545		0,0536
Korrekturfaktor der Gasuhr		/	0,995	100	0,995	i i	0,995
Mittl. Temperatur an der Gasuhr	°C		24		26		28
Desgl. in abs. Temperaturgraden	K	1	297		299		301
Barometerstand	hPa		1003		1003		1003
Stat. Druckdifferenz an der Gasuhr	hPa		0		0		0
Wasserdampfpartialdruck	hPa		29	7	33		37
Коп. Druck an der Gasuhr	hPa	1	1003	1 -	1003	E-	1003
Abges. Teilgasvolumen (Norm tr)	m³		0,0549		0,0490		0,0479
Mittl. Sauerstoffgehalt im Abgas	Vol%		3,6		3,8		3,7
Bezugssauerstoffgehalt	Vol%		3,0		3,0		3,0
MASSENKONZENTRATION UND -STROM				5_		3	
gefundene Masse in der Probe	μд		1890,0		1690,0	1	1650,0
Effizienz der Absorption							
gefundene Masse im 2. Absorber	μg			<	23,0		
Page 1987 Control of the Control of	(B-Probe)			1.5	< BG*		
Absorptionsgrad im 1. Absorber	%	Y		>	99		
Anforderung: ≥ 95 % (1. Absorber) oder < BG* (2. Absorber	eingehalten						
Masse, Feldblindwert	μд	<	21	<	21	<	21
bezogen auf das Teilgas volumen (Norm tr)	mg/m³	<	0,38	<	0,43	<	0,44
Blindwert in Relation zum Grenzwert	%	<	1,1	<	1,2	<	1,3
Blindwert in Relation zum Messwert	%	<	1,1	<	1,2	<	1,3
Massenkonzentration (Norm tr)	mg/m³		34,40		34,46		34,41
Massenstrom	g/h		2.800		2.810		2.800
Massenkonzentration (Norm tr) bei 3 Vol% O2	mg/m³		35,59		36,02		35,89

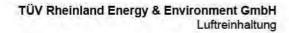

^{*} BG ≜ Bestimmungsgrenze

Seite 30 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

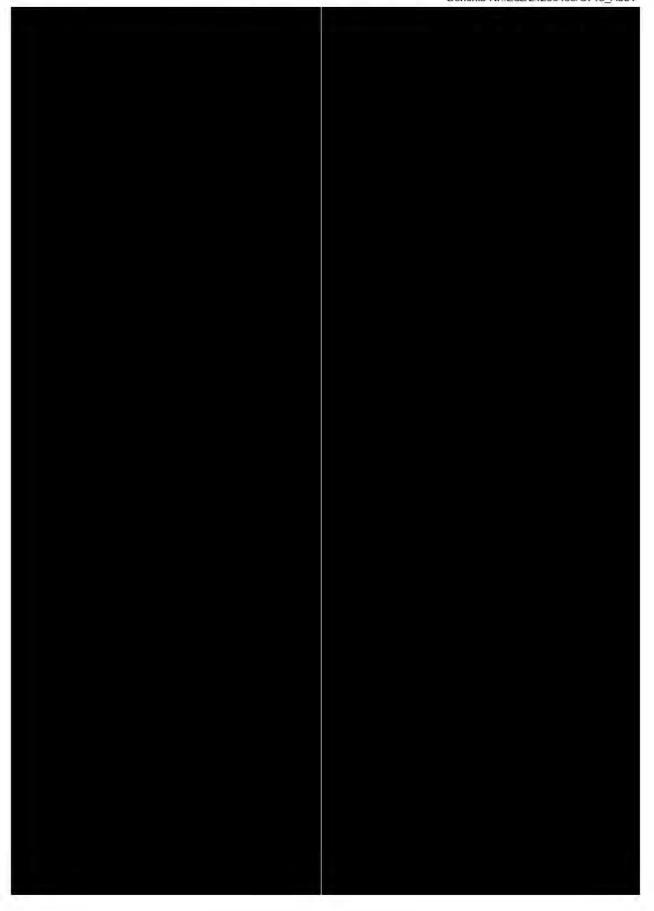
Anhang A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten


Nr.	Messung	von	bis	Betrieb
1	M1	10:45	11:15	Regellast
2	M2	11:50	12:20	Regellast
3	M3	13:07	13:37	Regellast


Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 31 von 33

Anhang A4: Aufzeichnungen des Betreibers


B:\GLOBAL\0050-BASF\LUDWIGSH.AFEN\CP\AMM\8500 Wechselschicht\AS\rauchgasmessungen_.xlsx Internal

Seite 32 von 33

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO $_2$, Staub und O $_2$, Berichts-Nr.:EuL/21266433/C715_A001

Bericht über die Durchführung von Emissionsmessungen an der Acrylsäure-Fabrik II bei der BASF SE für die Messkomponenten CO, NOx, Gesamt-C, SO₂, Staub und O₂, Berichts-Nr.:EuL/21266433/C715_A001

Seite 33 von 33

Anhang A5: Abkürzungen

Abkürzungen

SO ₂	Schwefeldioxid und -trioxid, angegeben als Schwefeldioxid
co	Kohlenmonoxid
NO	Stickstoffmonoxid
NO ₂	Stickstoffdioxid
NOx	Stickstoffmonoxid und -dioxid, angegeben als Stickstoffdioxid
O ₂	Sauerstoff
CO ₂	Kohlendioxid
Gesamt-C	Gesamtkohlenstoff
Staub	Gesamtstaub